(476h) No More Histograms: Variational and Bayesian Approaches to Estimating Potentials of Mean Force
AIChE Annual Meeting
2018
2018 AIChE Annual Meeting
Computational Molecular Science and Engineering Forum
Recent Advances in Molecular Simulation Methods I
Wednesday, October 31, 2018 - 9:45am to 10:00am
However, the process of histogramming obscures two important points; first, the observed distribution of observations along the desired collective variable or variables is not a histogram, but a series of delta functions, and approximating it as a histogram results in a loss of information. Second, the potential of mean force is (for molecular problems) a continuous function, and representing this function as a histogram is also an approximation.
In this study, we examine how to properly relate the observed empirical distribution to true, infinite sampling probability distribution as a function of collective variables, and hence determine the potential of mean force. We first show how histogramming is essentially a kernel density approximation with a "top hat" kernel, and show how we can generalize this process to other kernels that might be more useful for a given problem.
More powerfully, we present a variational approach, in which finding the continuous probability density function along a collective variable reduces to minimizing the Kullback-Leibler divergence between a trial function and the empirical distribution, as well as a fully Bayesian approach to sampling in the space of trial functions. This Bayesian approach additionally provides several powerful tools, such as determining which trial functions may be most appropriate for the problem and which trial functions are under or overfit. We demonstrate the application of these methods in 1, 2, and 3D model problems.