(593f) Vanadium As a Potential Catalytic Membrane Reactor Material for NH3 Production
AIChE Annual Meeting
2018
2018 AIChE Annual Meeting
Topical Conference: NH3 Energy+
Sustainable Ammonia Synthesis: Better & Beyond Haber-Bosch
Wednesday, October 31, 2018 - 10:27am to 10:33am
The aim of this work is to explore the potential of metallic membranes for N2 separation with the final intent to produce NH3. Based on a preliminary theoretical investigation using density functional theory, the Group V transition metals (e.g., vanadium (V), niobium (Nb) and tantalum (Ta)) show strong affinity toward N2. Moreover, from solubility and diffusivity values taken from the literature, iron (Fe) is a suitable fit for this application. The first experimental study showed that V, Ta, Nb, and Fe have a N2-permeating fluxes on the order of 10-5 and 10-4 molN2/m2·sec, depending on the operating condition used and that V-based metallic membranes have excellent properties for the preferential transport of N2 over CO2 and CH4 with near-infinite selectivity
The V metal is, hence, used as a potential membrane to produce NH3. Specifically, it is housed in the membrane reactor where a H2 stream is used as the sweep gas to promote the NH3 reaction. Lower pressures than the conventional Haber-Bosch process are used. Specifically, a range of operating pressure from 30 to 60 bar, instead of 200 bar (Haber-Bosch process), and a range of temperature from 350 °C to 500 °C are used as conditions to produce NH3. The performance of the membrane reactor in terms of NH3 conversion is, hence, investigated.