(622d) A Near Ambient Pressure (NAP)-XPS Study on Platinum Nanoparticles Supported on Zr-Based Metal Organic Frameworks (MOFs)
AIChE Annual Meeting
2018
2018 AIChE Annual Meeting
Catalysis and Reaction Engineering Division
In Situ and Operando Spectroscopy
Thursday, November 1, 2018 - 9:00am to 9:20am
The first near ambient pressure (NAP)-XPS study of CO oxidation over Pt nanoparticles (NPs) incorporated into Zr-based UiO (UiO for Universitetet i Oslo) MOFs was carried out. For this Purpose, the MOF-based Catalysts were prepared by wetness impregnation (WI-PtNPs@UiO-67) and linker design (LD-PtNPs@UiO-67) methods along with PtNPs@ZrO2 as the control catalyst. Firstly, the as-synthesized catalysts were reduced in situ prior to the operando XPS analysis. The existence of Pt(II) species was proved in UiO-67 by observing Pt 4f core level peaks at a high binding energy of 72.6±0.1 eV. However, by heating the WI-PtNPs@UiO-67 catalyst in situ to 200 °C under vacuum, the higher BE components disappear, leaving only the metallic Pt 4fdoublet, confirming the formation of Pt NPs. The complete reduction of LD-PtNPs@UiO-67 is achieved at 250 °C and 1 mbar H2. To understand the chemical state of Pt NPs in UiO-67 during catalytic turnover, we analyzed the Pt 4f region using operando NAP-XPS in the temperature-programmed measurements (100â260 °C) with reference to PtNPs@ZrO2 catalyst. CO conversion during NAP-XPS experiments with the stoichiometric mixture shows that LD-PtNPs@UiO-67 has a better CO turnover frequency (TOF, 0.066 sâ1 at 260 °C) than the other two (ca. 0.055 sâ1). Pt 4f peaks only show one chemical species present at all temperatures, but the core level BE shifts change as a function of reaction temperature, i.e. Pt 4f peak from 71.8 eV at T < 200 °C to 71.2 eV at T > 200 °C. As this higher BE state of 71.8 eV was not observed after in situ reduction of the catalysts and only once the CO/O2 mixture was introduced, we attribute it to the surface saturation of Pt NPs with adsorbed CO. In general, the quantitative analysis of Pt 4f data from the operando NAP-XPS experiments shows that the surface chemistry of the Pt active phase in the two PtNPs@UiO-67 catalysts is the same, comparable to that of PtNPs@ZrO2. The observed difference in the catalytic activity can be attributed to the particle sizes of Pt NPs, as well as the dispersion of active phase in the support, which are different in the three catalysts.