(666a) Electronic Structure of Electron-Irradiated Graphene and Effects of Hydrogen Passivation
AIChE Annual Meeting
2018
2018 AIChE Annual Meeting
Nanoscale Science and Engineering Forum
Graphene and Carbon Nanotubes: Characterization, Functionalization, and Dispersion I
Thursday, November 1, 2018 - 12:30pm to 12:55pm
Here, based on molecular-dynamics (MD) simulations in conjunction with first-principles density functional theory (DFT) calculations, we report results for the electronic structure of irradiated and irradiation-induced amorphized graphene. We find that localized states appear at the Fermi level upon irradiation and the corresponding local density of states increases with increasing inserted vacancy concentration. Furthermore, electronic band structure calculations show that band flattening occurs due to electron localization in the vicinity of irradiation-induced defects and reduces the charge carrier mobility. This band flattening effect becomes stronger with increasing vacancy concentration inducing an increasing number of flat bands near the Fermi level. Moreover, we present electron wave functions (as frontier orbitals) and local charge density distributions, which provide clear evidence of carrier localization near the irradiation-induced carbon dangling bonds. Passivating these bonds with hydrogen atoms leads to delocalization of the charge density, hence increasing the carrier mobility, which also is seen in the reduced density of states observed at the Fermi level and the increased band dispersion with increasing inserted vacancy concentration. Importantly, we find these spatially localized states to be spin polarized, which gives rise to a net local magnetic moment. Passivation of these states can cause the complete removal of these induced local magnetic moments. Our studies set the stage for understanding and designing electronic two-dimensional materials for specific applications using irradiated graphene and passivated irradiated graphene as a well understood template.