(718a) Studying the Toughening Mechanism of Mussel-Inspired Iron-Catechol Complexes in Epoxy Networks
AIChE Annual Meeting
2018
2018 AIChE Annual Meeting
Materials Engineering and Sciences Division
Polymer Networks and Gels
Thursday, November 1, 2018 - 3:30pm to 3:45pm
It is challenging to synthesize covalent polymer networks which are both stiff and extensible. One strategy to overcome this challenge is to incorporate both permanent covalent bonds and reversible bonds of various chemistries into the same network. The marine mussel is known to apply this strategy via reversible iron-catechol coordination complexes in its byssal threads which yields a highly extensible and strong material. In this work, the same iron-catechol complexes found in the mussel system are incorporated into a polyethylene glycol epoxy network. The resulting hybrid network is orders-of-magnitude stiffer than its iron-free equivalent (as measured by a uniaxial tensiometer) and can reversibly dissipate energy upon cyclic loading. Small-angle x-ray scattering suggests that the iron-catechol complexes form ionomeric nanodomains within the network which may further restrict chain mobility and therefore enhance the effect of the additional reversible cross-links. The ratio of constituent monomers was varied to dilute the networkâs catechol content and study the role of the iron-complexes and nanodomains in the networkâs mechanical properties. The effects of exposing the network to humidity and oxidative environments were also explored and were respectively shown to reversibly and irreversibly reduce the networkâs ultimate tensile strength. This work demonstrates that iron-catechol complexes can be used to enhance the mechanical properties of polymer networks, however the mechanism depends heavily on environmental conditions and the networkâs nanostructure.