(84d) Understanding Transport of Small Solutes in the Pores of a Nanostructured Lyotropic Liquid Crystal Membrane
AIChE Annual Meeting
2018
2018 AIChE Annual Meeting
Engineering Sciences and Fundamentals
Fundamental Research in Transport Processes
Monday, October 29, 2018 - 8:54am to 9:12am
We have used molecular dynamics simulations in order to form a detailed atomistic model of this system by maximizing its consistency with experimental observables such as 2D wide angle X-ray scattering patterns and ionic conductivity measurements. Using our atomistically detailed model, we study the transport mechanisms of a range of neutral solutes within the pores. We calculate the diffusion constant along the pore for each solute, and examine transport mechanisms as the rates of diffusion change. We also calculate the potential of mean force (PMF) using umbrella sampling in order to construct free energy profiles along the pore. We use this information to understand selectivity based on both size and chemical details of the solute. With this understanding, we can identify bottlenecks in membrane design so that we can suggest new LLC monomer structures to be tested experimentally.