(176w) Comparison of Community Detection Algorithms in Biological Networks from a Topological and Functional Perspective | AIChE

(176w) Comparison of Community Detection Algorithms in Biological Networks from a Topological and Functional Perspective

Authors 

Subramaniam, S., University of California, San Diego
Rahiminejad, S., University of California, San Diego
Community detection algorithms are used to uncover important features in networks. There are several studies focused on social networks but only a few deal with biological networks. Directly or indirectly, most of the methods maximize modularity, a measure of the density of links within communities as compared to links between communities. Here we analyze six different community detection algorithms, namely, Combo, Conclude, Fast Greedy, Leading Eigen, Louvain and Spinglass, on two important biological networks to find their communities and evaluate the results in terms of topological and functional features through Kyoto Encyclopedia of Genes and Genomes pathway and Gene Ontology term enrichment analysis. The main assessment criteria are 1) appropriate community size (neither too small nor too large), 2) representation within the community of only one or two broad biological functions, 3) most genes from the network belonging to a pathway should also belong to only one or two communities, and 4) performance speed. The first network in this study is a network of Protein-Protein Interactions (PPI) in Saccharomyces cerevisiae (Yeast) with 6,532 nodes and 229,696 edges and the second is a network of PPI in Homo sapiens (Human) with 20,644 nodes and 241,008 edges. All six methods perform well, i.e., find reasonably sized and biologically interpretable communities, for the Yeast PPI network but the Conclude method does not find reasonably sized communities for the Human PPI network. Louvain method maximizes modularity by using an agglomerative approach, and is the fastest method for community detection. For the Yeast PPI network, the results of Spinglass method are most similar to the results of Louvain method with regard to the size of communities and core pathways they identify, whereas for the Human PPI network, Combo and Spinglass methods yield the most similar results, with Louvain being the next closest. Overall, Louvain method is likely the best method to find communities in terms of detecting known core pathways in a reasonable time.

References:

Rahiminejad, S., M. R. Maurya and S. Subramaniam, “Topological and Functional Comparison of Community Detection Algorithms in Biological Networks”, BMC Bioinformatics, 2019, Accepted.