(19b) Cellular Adaptations Against Hydraulic Resistance Towards Higher Motility
AIChE Annual Meeting
2019
2019 AIChE Annual Meeting
Food, Pharmaceutical & Bioengineering Division
Cell Biomechanics and Adhesion
Sunday, November 10, 2019 - 3:48pm to 4:06pm
To recreate in the in vitro setting confining tissue tracks encountered in vivo, we fabricated stiff (3,000 MPa) polydimethyl-siloxane (PDMS)- and compliant (10 kPa) polyacrylamide (PA)- based microchannels and studied the migratory phenomena of both cancerous and non-cancerous cell lines under elevated hydraulic resistances. Specifically, we examined MDA-MB-231 breast cancer cells, human osteosarcoma (HOS) cells as well as primary dermal fibroblasts and human aortic smooth muscle cells (hAOSMCs). Of note, all these cell types displayed increased motility at high hydraulic resistance even in two-dimensional (2D) wound healing assays, as evidenced by the markedly reduced times for wound closure (e.g., from 20 hours down to 11 hours for MDA-MB-231 cells and from 23 hours to 15 hours for fibroblasts). Also, migration speeds through confining channels dramatically increased in response to elevated hydraulic resistance (e.g., from 50 µm/h to 80 µm/h for MDA-MB-231 cells and from 60 µm/h to 72 µm/h for fibroblasts). Importantly, these increased speeds were accompanied by marked phenotypic changes. Specifically, MDA-MB-231 cells, which exhibit a primarily bleb-based phenotype under physiologically-relevant resistances, transition to a mesenchymal phenotype at elevated resistances. Although high concentrations of latrunculin A (2 µM) failed to abrogate MDA-MB-231 cell locomotion in confining channels at physiologically-relevant resistances, which is in line with the osmotic engine model (OEM), they were sufficient to completely halt cell migration inside microchannels at elevated resistances. Moreover, shRNA-based gene silencing of sodium/hydrogen exchanger 1 (NHE1) in MDA-MB-231 cells had a markedly larger impact on confined migration under increased resistance. The increased dependency of cells upon actin polymerization and NHE1-dependent water permeation under higher resistance also hints at an intricate crosstalk between different migratory pathways. Finally, optogenetic tools are being used in confining cells experiencing different hydraulic resistances to elucidate the involvement of additional players in the crosstalk of actin cytoskeleton and OEM.
Collectively, our data suggest that hydraulic resistance regulates the efficiency, modes and mechanisms of cell migration. Furthermore, we showcase that increasing resistance to pathologically relevant levels induces plasticity, primarily in cancerous cells, and these studies will enhance our understanding of the mechanisms underlying migration and phenotypic deregulation, enabling better design of drugs specifically targeting the adaptability of these cells.