(223g) Evaluation of Structured Adsorbents for Carbon Capture Applications
AIChE Annual Meeting
2019
2019 AIChE Annual Meeting
Separations Division
PSA/TSA
Monday, November 11, 2019 - 5:35pm to 5:55pm
Most of the studies on these structured adsorbents are confined to adsorption equilibrium, kinetic studies and pressure drop tests and to the best of our knowledge, we have not seen in the open literature, how much of an improvement in productivity and energy consumption can be achieved over conventional pelletized sorbents. This information can be obtained from rigorous process optimization studies. The goal of the present work is therefore to evaluate the performance of structured sorbents against conventionally shaped pellets. The structured adsorbents used in this study were obtained by 3D printing. The advantage of this method is that, it is possible to obtain different shapes of adsorbents, with controlled channel sizes and geometries. We have considered two cases with different CO2 concentrations 1. Post-combustion CO2 capture from a coal fired power plant containing 15% CO2, 5% H2O and 80% N2 and 2. The PSA tail gas of the hydrogen purification unit which contains 51% CO2, 10-15% CO,10-15% CH4 and 20-25% H2 and a small amount of H2O.
In this study, we have used a six-step vacuum swing adsorption (VSA) cycle which has been studied in literature2, to evaluate the performance of the aforementioned two types of adsorbents. We have chosen supported amine sorbents in this study, owing to their tolerance to moisture in comparison with zeolites and MOFs. The amines were first grafted on to the silica beads and 3D-printed silica structure. In the next step, single component isotherms of the different gases were obtained using a commercial volumetric apparatus and dynamic column breakthrough experiments were carried out to measure the kinetic constants. Detailed optimization of the VSA cycle was then carried out to arrive at operating conditions satisfying 95% CO2 purity and 90% recovery constraints with maximum productivity and minimum energy consumption.
References:
- IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC, Geneva, Switzerland.
- Khurana, M.; Farooq, S., Simulation and optimization of a 6-step dual-reflux VSA cycle for post-combustion CO2 capture. Chemical Engineering Science 2016, 152, 507-515.