(308a) Techno-Economic Analysis of Direct Methane Aromatization for Natural Gas Upgrading with Mini-Plant Construction for Remote Deployment
AIChE Annual Meeting
2019
2019 AIChE Annual Meeting
Topical Conference: Advances in Fossil Energy R&D
Advances in Methane Coupling Reaction and Aromatization
Tuesday, November 12, 2019 - 12:30pm to 12:48pm
Previous economic studies of DMA have been reported which either invoke unrealistic assumptions in the process model,2 do not consider processing of the gaseous hydrogen,2, 3 or do not consider the limitations imposed on the process due to remote deployment.4 With these issues in mind, a DMA mini-plant processing 20 MMSCFD of natural gas was designed with currently available technology to provide a platform for the investigation of process intensified alternatives. The reactor section of the plant uses a DMA catalyst developed at Texas Tech which deactivates at a significantly slower rate than previous catalysts.5 The unit was investigated for economic feasibility and sustainability. In particular, the analysis identifies four particular areas which can benefit from intensification: aromatics yield (ie. one-pass conversion), coke selectivity, hydrogen recovery, and separation and purification of the aromatic products. Although intensified reactor technology for the DMA process is already being investigated for improving the yield with6, 7 and without integrated hydrogen recovery8, 9, the process model framework should provide opportunities for investigating additional intensification technologies, particularly in separations.
- H. Fleisch. [White Paper], World Bank-Global Gas Flaring Reduction Partnership, 2015.
- Pérez-Uresti, S.I. et al., Processes, 2017, 5, 33.
- Camilo Corredor, E., P. Chitta, and M. D. Deo. Fuel Pro. Tech., 2019, 183, 55 â 61.
- Huang, K. et al., Joule, 2018, 2, 349 â 365.
- Rahman, M., A. Sridhar, and S.J. Khatib. Cat. A Gen., 2018, 558, 67 â 80.
- Kee, B. et al., Eng. Chem. Res., 2017, 56, 3551 â 3559.
- Morejundo, S.H. et al., Science, 2016, 353(6299), 563 â 566.
- Brady, C., B. Murphy, and B. Xu. ACS Catal., 2017, 7(6), 3924 â 3928.
- Cao, Z. et al., Chem. Int. Ed., 2013, 52, 13794 â 13797.