(380as) Experimental and Simulation Study on Bubbling Behaviour of Geldart Group B Particle Pulsed Fluidized Bed
AIChE Annual Meeting
2019
2019 AIChE Annual Meeting
Particle Technology Forum
Poster Session: Particle Technology Forum
Tuesday, November 12, 2019 - 3:30pm to 5:00pm
Bubbling behaviour of group B particles in a two-dimensional column was studied experimentally. Solenoid valves were used to generate pulsation in the gas flow. Unlike the conventional concept of pulsed fluidization, total gas flow was not subjected to pulsation; a pulsing gas flow was imposed on a constant steady gas flow to the bed. In this paper, we are presenting the CFD simulation results of the system alongside the experimental findings. Barracuda VR was used for the CFD simulation. Glass beads with density of 2520 kg/m3 were used for particles. Air was used as the fluidizing medium and Wen-Yu was the drag model applied in most simulation cases. Effects of flow pulsation in general, and pulsation conditions such as frequency in particular, on bubbling characteristics were studied.
We found that pulsation in general leads to an increase in average bubble size, especially at lower pulsation frequencies; Up to 100% increase in average bubble size could be observed. The bubble size decreases with increasing pulsation frequency. This demonstrates that pulsation gives additional degrees of freedom to control fluidized-bed hydrodynamics.
[1] Hadi, B., van Ommen, J. R., & Coppens, M.-O. (2011). Enhanced particle mixing in pulsed fluidized beds and the effect of internals. Industrial & Engineering Chemistry Research, 51(4), 1713-1720.
[2] Akhavan, A., van Ommen, J. R., Nijenhuis, J., Wang, X. S., Coppens, M.-O., & Rhodes, M. J. (2008). Improved drying in a pulsation-assisted fluidized bed. Industrial & Engineering Chemistry Research, 48(1), 302-309.
[3] Wu, K., de Martín, L., & Coppens, M.-O. (2017). Pattern formation in pulsed gas-solid fluidized beds - the role of granular solid mechanics. Chemical Engineering Journal 329, 4-14.