(415h) Granular Composite-Enabled Tissue-like Dynamic Responsive Materials
AIChE Annual Meeting
2019
2019 AIChE Annual Meeting
Materials Engineering and Sciences Division
Mechanics, Structure, and Properties in Polymers
Tuesday, November 12, 2019 - 5:30pm to 5:45pm
Living tissues are an integrated, multi-scale architecture consisting of dense cell ensembles and extracellular matrices (ECM) that cooperatively enable the excellent mechanical properties and dynamic responsiveness. One key challenge in creating tissue-like materials is to identify cell-like building blocks that can synergistically respond to external stress with existing ECM-like polymer platforms. Here, we designed a granular material-enabled hybrid gel, featuring cell-like starch granules embedded in ECM-like synthetic hydrogel matrices that readily displayed dynamic reconfigurable effects upon mechanical training. Multi-scale and in-situ characterizations reveal that the unique combination between microscopic (chemical bonding) and mesoscopic (physical friction) interactions from starch granules cooperatively give rise to the tissue-like properties, such as dynamic responsiveness, strain-stiffening, and self-healability. Our results suggest that granular materials, a largely ignored component for biomimetics, can be critical in enabling dynamic behaviors in artificial materials and even future adaptive and active metamaterials.