(456e) Modeling Cohesive Powder Flow in a Rotating Drum Using the Finite Element Method and a Mohr-Coulomb Material Model
AIChE Annual Meeting
2019
2019 AIChE Annual Meeting
Particle Technology Forum
Dynamics and Modeling of Particulate Systems: Applications
Wednesday, November 13, 2019 - 9:40am to 10:05am
A Coupled Eulerian-Lagrangian finite element method (FEM) model assuming Mohr-Coulomb (MC) material behavior is developed to simulate the flow of cohesive powder in a rotating, circular drum. The MC properties used in the model are obtained from shear cell tests of microcrystalline cellulose. Corresponding rotating drum experiments using microcrystalline cellulose are also performed. The same binary image processing algorithm is used to capture the free surface changes from experiments and simulations. The free surface changes are characterized by the avalanche frequency for a constant rotation speed of the drum. The two sets of results are compared for various operating conditions.