(526f) Longevity Study of Microscale Non-Thermal Plasma Reforming of Methane to Higher Hydrocarbons and Syngas
AIChE Annual Meeting
2019
2019 AIChE Annual Meeting
Topical Conference: Advances in Fossil Energy R&D
Fuel Processing for Hydrogen Production
Wednesday, November 13, 2019 - 1:55pm to 2:12pm
Performing these reactions at the microscale level has the advantage of decreasing the space between the electrodes that create the electrical plasma. By reducing the size, less voltage is required in order to generate these plasmas which reduces the costs of the necessary power electronics. This also decreases the bypass of the system, due to the small volume of the channel compared to the volume of the discharge. The electron temperature can range from several 1,000 to 30,000 áµC â several orders of magnitude larger than what would be required by most reactions.
In this study, carbon-hydrogen bonds are broken which allows for longer hydrocarbons to form. By creating longer hydrocarbons from methane, this process transforms electrical energy into chemical potential energy. The major products of this process are syngas, C2 hydrocarbons and trace amounts of higher hydrocarbons. Wax products have been found to exist downstream from the discharge on the reactor channel walls. One major drawback of this approach is the rapid coking of the reactor channel at long (1+ hours) run times, leading to eventual flow anomalies, unfavorable product diffusion and eventually reactor failure.
Recent results showing how longevity (20+ hour run time) in these systems can be achieved and maintained will be presented.