(529h) Mechanical Behavior of Graphene Nanomeshes
AIChE Annual Meeting
2019
2019 AIChE Annual Meeting
Nanoscale Science and Engineering Forum
Graphene and Carbon Nanotubes: Characterization, Functionalization, and Dispersion
Wednesday, November 13, 2019 - 2:43pm to 3:00pm
Here, we report the results of a comprehensive study of the mechanical response of GNMs to uniaxial tensile straining and determine their mechanical properties based on molecular-dynamics (MD) simulations of dynamic deformation tests according to a reliable bond-order interatomic potential. We establish the dependences of the GNMsâ ultimate tensile strength, fracture strain, and fracture toughness on the nanomesh porosity and derive scaling laws for the strength-density relation of the GNMs. We place special emphasis on how the above properties are affected by the GNMsâ pore morphology and pore edge termination with H atoms. The underlying mechanisms of crack initiation and propagation, and of nanomesh failure are characterized in detail.
We also study the mechanical and structural response of GNMs to nanoindentation based on MD simulations of nanoindentation tests. We demonstrate that the elastic modulus and the hardness of the GNMs decrease monotonically with increasing nanomesh porosity and derive modulus-density and hardness-density scaling laws. We also examine the effects on the hardness and stiffness of the GNMs of the termination of the GNMsâ pore edges by hydrogenation. The underlying mechanisms of nanomesh structural response upon nanoindentation also are characterized in detail over the full range of the GNMsâ structural parameters examined.