(560b) “H2 -Free” Hydrodeoxygenation of Guaiacol over Ni-Mo/CeO2-C Nanocatalysts | AIChE

(560b) “H2 -Free” Hydrodeoxygenation of Guaiacol over Ni-Mo/CeO2-C Nanocatalysts

Authors 

Pastor-Perez, L. - Presenter, University of Surrey
Jin, W., University of Surrey
Villora Pico, J. J., University of Alicante
Sepúlveda-Escribano, A., University of Alicante
Ramirez-Reina, T., University of Surrey
v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VML);} .shape {behavior:url(#default#VML);}

HP Pastor Perez L Dr (Chem. & Proc. Eng.) 3 4 2018-07-30T07:06:00Z 2019-04-02T12:50:00Z 2019-04-02T12:51:00Z 1 1229 6761 56 15 7975 15.00

Clean Clean false 21 false false false ES ZH-CN X-NONE H4sIAAAAAAAEAKtWckksSQxILCpxzi/NK1GyMqwFAAEhoTITAAAA H4sIAAAAAAAEAKtWcslP9kxRslIyNDa0tDCzMLIwMDcyNDawNDVT0lEKTi0uzszPAykwrAUAWes4eiwAAAA= <ENInstantFormat><Enabled>1</Enabled><ScanUnformatted>1</ScanUnformatted><ScanChanges>1</ScanChanges><Suspended>0</Suspended></ENInstantFormat> <ENLayout><Style>ACS</Style><LeftDelim>{</LeftDelim><RightDelim>}</RightDelim><FontName>Calibri</FontName><FontSize>11</FontSize><ReflistTitle></ReflistTitle><StartingRefnum>1</StartingRefnum><FirstLineIndent>0</FirstLineIndent><HangingIndent>720</HangingIndent><LineSpacing>0</LineSpacing><SpaceAfter>0</SpaceAfter><HyperlinksEnabled>0</HyperlinksEnabled><HyperlinksVisible>0</HyperlinksVisible><EnableBibliographyCategories>0</EnableBibliographyCategories></ENLayout>


/* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:8.0pt; mso-para-margin-left:0cm; line-height:107%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri",sans-serif; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-fareast-language:EN-US;} table.MsoTableGrid {mso-style-name:"Table Grid"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-priority:39; mso-style-unhide:no; border:solid windowtext 1.0pt; mso-border-alt:solid windowtext .5pt; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-border-insideh:.5pt solid windowtext; mso-border-insidev:.5pt solid windowtext; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri",sans-serif; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:DengXian; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-ansi-language:EN-GB; mso-fareast-language:ZH-CN;}


text-align:center;line-height:normal"> 14.0pt;mso-ascii-font-family:Calibri;mso-fareast-font-family:" times new roman mso-hansi-font-family:calibri en-us>H2-free hydrodeoxygenation
of guaiacol over Ni-Mo/CeO2-C nanocatalysts

text-align:center;line-height:normal"> 14.0pt;mso-ascii-font-family:Calibri;mso-fareast-font-family:" times new roman mso-hansi-font-family:calibri en-us>

text-align:center;line-height:normal"> " times new roman mso-fareast-language:es>W. Jin 1, L. Pastor-Pérez 1,2*, J.J.
Villora-Picó2, S.Gu, A.
Sepúlveda-Escribano2, T. R. Reina 1*

text-align:center;line-height:normal"> mso-fareast-font-family:" times new roman mso-bidi-font-family:calibri>

text-align:center;line-height:normal"> 10.0pt;mso-ascii-font-family:Calibri;mso-fareast-font-family:" times new roman mso-hansi-font-family:calibri en-gb>1 " times new roman mso-ansi-language:en-gb>Chemical and Process Engineering
Department, University of Surrey, Guildford, UK

text-align:center;line-height:normal"> mso-ascii-font-family:Calibri;mso-fareast-font-family:" times new roman mso-hansi-font-family:calibri es>2 mso-fareast-font-family:" times new roman mso-bidi-font-family:calibri>Departamento de Química
Inorgánica, Instituto Universitario de Materiales de Alicante, Alicante, Spain

text-align:center;line-height:normal"> mso-fareast-font-family:" times new roman mso-bidi-font-family:calibri>* Calibri;mso-fareast-font-family:" times new roman mso-bidi-font-family:calibri>Autor principal: l.pastorperez@surrey.ac.uk

normal"> " times new roman mso-fareast-language:es>

normal">1. Introduction

line-height:normal"> mso-fareast-font-family:" times new roman mso-bidi-font-family:calibri>Catalytic
hydrodeoxygenation (HDO) is a fundamental technology Calibri;mso-fareast-font-family:" times new roman mso-bidi-font-family:calibri> to
achieve the effective upgrading of bio-oil with low emission. Currently, the
widespread implementation of HDO is limited by the supply of high pressure H2
(4-20 MPa). To date, several methods (e.g.
catalytic transfer hydrogenation (CTH), reforming followed by HDO, the
combination of metal oxidation with water and HDO and non-thermal plasma (NTP)
technology

Calibri;mso-fareast-font-family:"Times New Roman";mso-hansi-font-family:Calibri;
mso-bidi-font-family:Calibri;mso-ansi-language:PT;mso-fareast-language:ES'> style='mso-element:field-begin'> style='mso-spacerun:yes'> ADDIN EN.CITE
<EndNote><Cite><Author>Jin</Author><Year>2018</Year><RecNum>1021</RecNum><DisplayText><style
face="superscript">1</style></DisplayText><record><rec-number>1021</rec-number><foreign-keys><key
app="EN" db-id="ev50xfrfyztavjea2r9p0vz5tdstrx9rr2v0"
timestamp="1548931371">1021</key></foreign-keys><ref-type
name="Journal Article">17</ref-type><contributors><authors><author>Jin,
Wei</author><author>Pastor-Perez,
Laura</author><author>Shen,
DeKui</author><author>Sepúlveda-Escribano,
Antonio</author><author>Gu, Sai</author><author>Reina,
Tomas Ramirez</author></authors></contributors><titles><title>Catalytic
upgrading of biomass model compounds: Novel approaches and lessons learnt from
traditional hydrodeoxygenation‐a
review</title><secondary-title>ChemCatChem</secondary-title></titles><periodical><full-title>Chemcatchem</full-title></periodical><dates><year>2018</year></dates><isbn>1867-3880</isbn><urls></urls></record></Cite></EndNote> style='mso-element:field-separator'>1

lang=PT style='mso-ascii-font-family:Calibri;mso-fareast-font-family:"Times New Roman";
mso-hansi-font-family:Calibri;mso-bidi-font-family:Calibri;mso-ansi-language:
PT;mso-fareast-language:ES'>) have been proposed which could achieve the
deoxygenation with in-situ hydrogen
generation. It is noteworthy that metal oxidation with H2O (i.e. Zn) followed by subsequent HDO is
an attractive approach due to cheap water is used as the hydrogen source.
Nevertheless, the regeneration of metal requires high energy input

lang=PT style='mso-ascii-font-family:Calibri;mso-fareast-font-family:"Times New Roman";
mso-hansi-font-family:Calibri;mso-bidi-font-family:Calibri;mso-ansi-language:
PT;mso-fareast-language:ES'> style='mso-spacerun:yes'> ADDIN EN.CITE
<EndNote><Cite><Author>Cheng</Author><Year>2017</Year><RecNum>807</RecNum><DisplayText><style
face="superscript">2-3</style></DisplayText><record><rec-number>807</rec-number><foreign-keys><key
app="EN" db-id="ev50xfrfyztavjea2r9p0vz5tdstrx9rr2v0"
timestamp="1516717974">807</key></foreign-keys><ref-type
name="Journal Article">17</ref-type><contributors><authors><author>Cheng,
Shouyun</author><author>Wei,
Lin</author><author>Alsowij, Mustafa
Radhi</author><author>Corbin, Fletcher</author><author>Julson,
James</author><author>Boakye,
Eric</author><author>Raynie, Douglas</author></authors></contributors><titles><title>In
situ hydrodeoxygenation upgrading of pine sawdust bio-oil to hydrocarbon
biofuel using Pd/C catalyst</title><secondary-title>Journal of the
Energy Institute</secondary-title></titles><periodical><full-title>Journal
of the Energy
Institute</full-title></periodical><dates><year>2017</year></dates><urls></urls></record></Cite><Cite><Author>Cheng</Author><Year>2017</Year><RecNum>818</RecNum><record><rec-number>818</rec-number><foreign-keys><key
app="EN" db-id="ev50xfrfyztavjea2r9p0vz5tdstrx9rr2v0"
timestamp="1516810530">818</key></foreign-keys><ref-type
name="Journal
Article">17</ref-type><contributors><authors><author>Cheng,
Shouyun</author><author>Wei,
Lin</author><author>Julson,
James</author><author>Muthukumarappan,
Kasiviswanathan</author><author>Kharel, Parashu
Ram</author><author>Cao, Yuhe</author><author>Boakye,
Eric</author><author>Raynie,
Douglas</author><author>Gu, Zhengrong</author></authors></contributors><titles><title>Hydrodeoxygenation
upgrading of pine sawdust bio-oil using zinc metal with zero
valency</title><secondary-title>Journal of the Taiwan Institute of
Chemical
Engineers</secondary-title></titles><periodical><full-title>Journal
of the Taiwan Institute of Chemical Engineers</full-title></periodical><dates><year>2017</year></dates><urls></urls></record></Cite></EndNote> style='mso-element:field-separator'>2-3

lang=PT style='mso-ascii-font-family:Calibri;mso-fareast-font-family:"Times New Roman";
mso-hansi-font-family:Calibri;mso-bidi-font-family:Calibri;mso-ansi-language:
PT;mso-fareast-language:ES'> limiting its industrial application. Undoubtedly,
it is ideal to use water as the hydrogen source during HDO process considering
readily available and cheap advantages of water over other candidates.
Accordingly, we propose a novel HDO method to realize the normal">in-situ HDO suppressing the supply of external H2. It is
envisioned that water would undergo splitting on the catalytic surface to
produce hydrogen. Hydrogen can further participate in the HDO of bio-oil to
faciliate the oxygen removal purpose. " times new roman> EN-GB">Ni-based catalysts are promising candidates for normal">in-situ HDO process by tuning the support composition and/or
including promoters to adjust their catalytic functions. In this work, Ni-based
CeO2 and/or activated Calibri;mso-fareast-font-family:" times new roman mso-bidi-font-family:calibri>carbon
supported catalysts were synthesized, characterized and tested in guaiacol HDO
water-only reaction system. This novel method brings a new perspetive in the
development of econimically viable bio-oil upgrading technologies. mso-bidi-font-family:" times new roman> mso-bidi-font-family:" times new roman>

normal">

normal">2. Experimental

justify;text-justify:inter-ideograph;line-height:normal">CeO2-C (10wt.%
CeO2) was prepared in advance before the synthesis of Ni-based
catalysts. Five catalysts namely, Ni/CeO2, NiMo/CeO2,
Ni/C, Ni/CeO2-C and NiMo/CeO2-C
(with 15 wt.% Ni and 2 wt.% Mo) were synthesized by wet impregnation method and
characterized by H2-TPR, XRD, N2-adsorption, TEM, XPS and
Raman analysis. Prior to the activity tests, catalysts were activated at 400 oC for 1h under H2 atmosphere. The
catalytic performances of catalysts for guaiacol HDO
process were tested in a high pressure batch reactor (Parr Series 5500 HPCL
Reactor) by feeding 50 mL of a 0.01 mg/mL guaiacol
solution and 200 mg of catalyst at 250 oC
for 4h. After the reaction, the catalyst was collected by filtration. Products
were separated from water by using ethyl acetate and then analyzed by GC/FID
and GC/MS.

normal">

normal">3. Results and discussion

justify;text-justify:inter-ideograph;line-height:normal">The XRD patterns of
Ni-based catalysts after activation were shown in Figure 1.It is clear that
ceria and Ni dispersion are much better when activated carbon are used as
primary support. The Ni and ceria particle sizes are smaller in the carbon
supported materials. The textural properties summarised in Table 1 also
indicate the suitability of activated carbon to achieve large surface areas mso-bidi-font-family:" times new roman>. The catalytic
performance of all studied catalysts is presented in Figure 2. C-containing
catalysts exhibited higher activity compared to CeO2 supported
catalysts. For instance, Calibri;mso-hansi-font-family:Calibri;mso-bidi-font-family:" times new roman mso-ansi-language:en-gb>22 % mso-bidi-font-family:" times new roman>conversion of guaiacol is obtained in HDO over Ni/CeO2-C
catalyst,


90jcwfIWJU67QAgl6YK0S0CoHGBkTxKLZGx5TGhvj5O2G0SRWNoz/78nu9wcxkFMGNg6quQqL6RA
0s5Y6ir5vt9lD1JwBDIwOMJKHpHlpr69KfdHjyxSmriSfYz+USnWPY7AufNIadK6MEJMx9ApD/oD
OlTrorhX2lFEilmcO2RdNtjC5xDF9pCuTyYBB5bi6bQ4syoJ3g9WQ0ymaiLzg5KdCXlKLjvcW893
SUOqXwnz5DrgnHtJTxOsQfEKIT7DmDSUCaxw7Rqn8787ZsmRM9e2VmPeBN4uqYvTtW7jvijg9N/y
JsXecLq0q+WD6m8AAAD//wMAUEsDBBQABgAIAAAAIQA4/SH/1gAAAJQBAAALAAAAX3JlbHMvLnJl
bHOkkMFqwzAMhu+DvYPRfXGawxijTi+j0GvpHsDYimMaW0Yy2fr2M4PBMnrbUb/Q94l/f/hMi1qR
JVI2sOt6UJgd+ZiDgffL8ekFlFSbvV0oo4EbChzGx4f9GRdb25HMsYhqlCwG5lrLq9biZkxWOiqY
22YiTra2kYMu1l1tQD30/bPm3wwYN0x18gb45AdQl1tp5j/sFB2T0FQ7R0nTNEV3j6o9feQzro1i
OWA14Fm+Q8a1a8+Bvu/d/dMb2JY5uiPbhG/ktn4cqGU/er3pcvwCAAD//wMAUEsDBBQABgAIAAAA
IQBdyAVSfgIAAGIFAAAOAAAAZHJzL2Uyb0RvYy54bWysVEtv2zAMvg/YfxB0X514eWxBnCJrkWFA
0RZLh54VWUqMSaImKbGzX19KtpOg26XDLjZFfqT48aH5daMVOQjnKzAFHV4NKBGGQ1mZbUF/PK0+
fKLEB2ZKpsCIgh6Fp9eL9+/mtZ2JHHagSuEIBjF+VtuC7kKwsyzzfCc081dghUGjBKdZwKPbZqVj
NUbXKssHg0lWgyutAy68R+1ta6SLFF9KwcODlF4EogqKuYX0dem7id9sMWezrWN2V/EuDfYPWWhW
Gbz0FOqWBUb2rvojlK64Aw8yXHHQGUhZcZE4IJvh4BWb9Y5Zkbhgcbw9lcn/v7D8/vDoSFUWdEKJ
YRpb9CSaQL5AQyaxOrX1MwStLcJCg2rscq/3qIykG+l0/CMdgnas8/FU2xiMozLPR6NpPqaEoy0f
T4fTcQyTnb2t8+GrAE2iUFCHvUslZYc7H1poD4mXGVhVSqX+KUNqJPBxPEgOJwsGVyZiRZqELkxk
1GaepHBUImKU+S4kViIRiIo0g+JGOXJgOD2Mc2FC4p7iIjqiJCbxFscOf87qLc4tj/5mMOHkrCsD
LrF/lXb5s09Ztnis+QXvKIZm03Sd3kB5xEY7aBfFW76qsBt3zIdH5nAzsLe47eEBP1IBVh06iZId
uN9/00c8DixaKalx0wrqf+2ZE5SobwZH+fNwNIqrmQ6j8TTHg7u0bC4tZq9vANsxxHfF8iRGfFC9
KB3oZ3wUlvFWNDHD8e6Chl68Ce3+46PCxXKZQLiMloU7s7Y8ho7dibP21DwzZ7uBDDjK99DvJJu9
mssWGz0NLPcBZJWGNha4rWpXeFzkNPbdoxNfistzQp2fxsULAAAA//8DAFBLAwQUAAYACAAAACEA
DDZpmeMAAAAMAQAADwAAAGRycy9kb3ducmV2LnhtbEyPwU7DMAyG70i8Q2QkbizpWKvSNZ2mShMS
gsPGLtzcxmurNUlpsq3w9GSncbPlT7+/P19NumdnGl1njYRoJoCRqa3qTCNh/7l5SoE5j0Zhbw1J
+CEHq+L+LsdM2YvZ0nnnGxZCjMtQQuv9kHHu6pY0upkdyITbwY4afVjHhqsRLyFc93wuRMI1diZ8
aHGgsqX6uDtpCW/l5gO31Vynv335+n5YD9/7r1jKx4dpvQTmafI3GK76QR2K4FTZk1GO9RKSeJEE
VMIifQnDlRAijYBVEuJnEQEvcv6/RPEHAAD//wMAUEsBAi0AFAAGAAgAAAAhALaDOJL+AAAA4QEA
ABMAAAAAAAAAAAAAAAAAAAAAAFtDb250ZW50X1R5cGVzXS54bWxQSwECLQAUAAYACAAAACEAOP0h
/9YAAACUAQAACwAAAAAAAAAAAAAAAAAvAQAAX3JlbHMvLnJlbHNQSwECLQAUAAYACAAAACEAXcgF
Un4CAABiBQAADgAAAAAAAAAAAAAAAAAuAgAAZHJzL2Uyb0RvYy54bWxQSwECLQAUAAYACAAAACEA
DDZpmeMAAAAMAQAADwAAAAAAAAAAAAAAAADYBAAAZHJzL2Rvd25yZXYueG1sUEsFBgAAAAAEAAQA
8wAAAOgFAAAAAA==
" filled="f" stroked="f" strokeweight=".5pt"/> margin-left:436px;margin-top:326px;width:240px;height:31px">


Fresh                                          Spent

 

mso-hansi-font-family:Calibri;mso-bidi-font-family:" times new roman mso-ansi-language:en-gb>which is a significant

90jcwfIWJU67QAgl6YK0S0CoHGBkTxKLZGx5TGhvj5O2G0SRWNoz/78nu9wcxkFMGNg6quQqL6RA
0s5Y6ir5vt9lD1JwBDIwOMJKHpHlpr69KfdHjyxSmriSfYz+USnWPY7AufNIadK6MEJMx9ApD/oD
OlTrorhX2lFEilmcO2RdNtjC5xDF9pCuTyYBB5bi6bQ4syoJ3g9WQ0ymaiLzg5KdCXlKLjvcW893
SUOqXwnz5DrgnHtJTxOsQfEKIT7DmDSUCaxw7Rqn8787ZsmRM9e2VmPeBN4uqYvTtW7jvijg9N/y
JsXecLq0q+WD6m8AAAD//wMAUEsDBBQABgAIAAAAIQA4/SH/1gAAAJQBAAALAAAAX3JlbHMvLnJl
bHOkkMFqwzAMhu+DvYPRfXGawxijTi+j0GvpHsDYimMaW0Yy2fr2M4PBMnrbUb/Q94l/f/hMi1qR
JVI2sOt6UJgd+ZiDgffL8ekFlFSbvV0oo4EbChzGx4f9GRdb25HMsYhqlCwG5lrLq9biZkxWOiqY
22YiTra2kYMu1l1tQD30/bPm3wwYN0x18gb45AdQl1tp5j/sFB2T0FQ7R0nTNEV3j6o9feQzro1i
OWA14Fm+Q8a1a8+Bvu/d/dMb2JY5uiPbhG/ktn4cqGU/er3pcvwCAAD//wMAUEsDBBQABgAIAAAA
IQCAkpOxIgIAACMEAAAOAAAAZHJzL2Uyb0RvYy54bWysU9uO2yAQfa/Uf0C8N3bcpEmsOKtttqkq
bS/Sbj8AYxyjAkOBxE6/vgPOZqPu26p+QAwzHJ85c1jfDFqRo3BegqnodJJTIgyHRpp9RX8+7t4t
KfGBmYYpMKKiJ+Hpzebtm3VvS1FAB6oRjiCI8WVvK9qFYMss87wTmvkJWGEw2YLTLGDo9lnjWI/o
WmVFnn/IenCNdcCF93h6NybpJuG3reDhe9t6EYiqKHILaXVpreOabdas3DtmO8nPNNgrWGgmDf70
AnXHAiMHJ19AackdeGjDhIPOoG0lF6kH7Gaa/9PNQ8esSL2gON5eZPL/D5Z/O/5wRDY4O0oM0zii
RzEE8hEGUkR1eutLLHqwWBYGPI6VsVNv74H/8sTAtmNmL26dg74TrEF203gzu7o64vgIUvdfocHf
sEOABDS0TkdAFIMgOk7pdJlMpMLx8H2+WBRTTHHMzYrVcjVPs8tY+XTdOh8+C9AkbirqcPQJnh3v
fYh0WPlUkuiDks1OKpUCt6+3ypEjQ5vs0pc6wC6vy5QhfUVX82KekA3E+8lBWga0sZK6oss8fqOx
ohyfTJNKApNq3CMTZc76RElGccJQD+dBYH3UrobmhII5GF2Lrww3Hbg/lPTo2Ir63wfmBCXqi0HR
V9PZLFo8BbP5osDAXWfq6wwzHKEqGigZt9uQnkWUw8AtDqeVSbZnJmfK6MSk5vnVRKtfx6nq+W1v
/gIAAP//AwBQSwMEFAAGAAgAAAAhAD+FLEneAAAACQEAAA8AAABkcnMvZG93bnJldi54bWxMj8FO
wzAQRO9I/IO1SFxQ61DSmoRsKkACcW3pBzixm0TE6yh2m/TvWU70NqsZzbwttrPrxdmOofOE8LhM
QFiqvemoQTh8fyyeQYSoyejek0W42ADb8vam0LnxE+3seR8bwSUUco3QxjjkUoa6tU6HpR8ssXf0
o9ORz7GRZtQTl7terpJkI53uiBdaPdj31tY/+5NDOH5ND+tsqj7jQe3SzZvuVOUviPd38+sLiGjn
+B+GP3xGh5KZKn8iE0SPsMhWnETInlIQ7KdqzaJCUCpJQZaFvP6g/AUAAP//AwBQSwECLQAUAAYA
CAAAACEAtoM4kv4AAADhAQAAEwAAAAAAAAAAAAAAAAAAAAAAW0NvbnRlbnRfVHlwZXNdLnhtbFBL
AQItABQABgAIAAAAIQA4/SH/1gAAAJQBAAALAAAAAAAAAAAAAAAAAC8BAABfcmVscy8ucmVsc1BL
AQItABQABgAIAAAAIQCAkpOxIgIAACMEAAAOAAAAAAAAAAAAAAAAAC4CAABkcnMvZTJvRG9jLnht
bFBLAQItABQABgAIAAAAIQA/hSxJ3gAAAAkBAAAPAAAAAAAAAAAAAAAAAHwEAABkcnMvZG93bnJl
di54bWxQSwUGAAAAAAQABADzAAAAhwUAAAAA
" stroked="f">

Figure 1 XRD patterns of reduced catalysts

 

Table 1 Textural properties of catalysts

 

SBET (m2/g)

Vmicro (cc/g)a

Vtotal (cc/g)

Ni/CeO2

78

0.029

0.064

NiMo/CeO2

46

0.017

0.069

Ni/C

1062

0.378

0.85

Ni/CeO2-C

1027

0.368

0.79

NiMo/CeO2-C

1017

0.364

0.79

 

 


Figure 1 XRD patterns of reduced catalysts
Table 1 Textural properties of catalysts SBET (m2/g) Vmicro (cc/g)a Vtotal (cc/g)
Ni/CeO2 78 0.029 0.064
NiMo/CeO2 46 0.017 0.069
Ni/C 1062 0.378 0.85
Ni/CeO2-C 1027 0.368 0.79
NiMo/CeO2-C 1017 0.364 0.79
" v:shapes="Text_x0020_Box_x0020_2" class="documentimage"> Calibri;mso-hansi-font-family:Calibri;mso-bidi-font-family:" times new roman mso-ansi-language:en-gb>result in the

90jcwfIWJU67QAgl6YK0S0CoHGBkTxKLZGx5TGhvj5O2G0SRWNoz/78nu9wcxkFMGNg6quQqL6RA
0s5Y6ir5vt9lD1JwBDIwOMJKHpHlpr69KfdHjyxSmriSfYz+USnWPY7AufNIadK6MEJMx9ApD/oD
OlTrorhX2lFEilmcO2RdNtjC5xDF9pCuTyYBB5bi6bQ4syoJ3g9WQ0ymaiLzg5KdCXlKLjvcW893
SUOqXwnz5DrgnHtJTxOsQfEKIT7DmDSUCaxw7Rqn8787ZsmRM9e2VmPeBN4uqYvTtW7jvijg9N/y
JsXecLq0q+WD6m8AAAD//wMAUEsDBBQABgAIAAAAIQA4/SH/1gAAAJQBAAALAAAAX3JlbHMvLnJl
bHOkkMFqwzAMhu+DvYPRfXGawxijTi+j0GvpHsDYimMaW0Yy2fr2M4PBMnrbUb/Q94l/f/hMi1qR
JVI2sOt6UJgd+ZiDgffL8ekFlFSbvV0oo4EbChzGx4f9GRdb25HMsYhqlCwG5lrLq9biZkxWOiqY
22YiTra2kYMu1l1tQD30/bPm3wwYN0x18gb45AdQl1tp5j/sFB2T0FQ7R0nTNEV3j6o9feQzro1i
OWA14Fm+Q8a1a8+Bvu/d/dMb2JY5uiPbhG/ktn4cqGU/er3pcvwCAAD//wMAUEsDBBQABgAIAAAA
IQAdaZ1FIwIAACMEAAAOAAAAZHJzL2Uyb0RvYy54bWysU9uO2yAQfa/Uf0C8N3YSZ5tYcVbbbFNV
2l6k3X4AxjhGBYYCiZ1+/Q44m0bbt6o8IIYZDjNnzqxvB63IUTgvwVR0OskpEYZDI82+oj+edu+W
lPjATMMUGFHRk/D0dvP2zbq3pZhBB6oRjiCI8WVvK9qFYMss87wTmvkJWGHQ2YLTLKDp9lnjWI/o
WmWzPL/JenCNdcCF93h7PzrpJuG3reDhW9t6EYiqKOYW0u7SXsc926xZuXfMdpKf02D/kIVm0uCn
F6h7Fhg5OPkXlJbcgYc2TDjoDNpWcpFqwGqm+atqHjtmRaoFyfH2QpP/f7D86/G7I7Kp6JwSwzS2
6EkMgXyAgcwiO731JQY9WgwLA15jl1Ol3j4A/+mJgW3HzF7cOQd9J1iD2U3jy+zq6YjjI0jdf4EG
v2GHAAloaJ2O1CEZBNGxS6dLZ2IqHC/nebFa5QtKOPqKYr68WaTeZax8eW6dD58EaBIPFXXY+gTP
jg8+xHRY+RISf/OgZLOTSiXD7eutcuTIUCa7tFIFr8KUIX1FV4vZIiEbiO+TgrQMKGMldUWXeVyj
sCIdH02TQgKTajxjJsqc+YmUjOSEoR5SIy6019CckDAHo2pxyvDQgftNSY+Kraj/dWBOUKI+GyR9
NS2KKPFkFIv3MzTctae+9jDDEaqigZLxuA1pLCIdBu6wOa1MtMUujpmcU0YlJjbPUxOlfm2nqD+z
vXkGAAD//wMAUEsDBBQABgAIAAAAIQC40YMz3wAAAAoBAAAPAAAAZHJzL2Rvd25yZXYueG1sTI9B
TsMwEEX3SNzBGiQ2iNqU4tRpJhUggdi29ABOPE2ixnYUu016e8wKVqPRPP15v9jOtmcXGkPnHcLT
QgAjV3vTuQbh8P3xuAYWonZG994RwpUCbMvbm0Lnxk9uR5d9bFgKcSHXCG2MQ855qFuyOiz8QC7d
jn60OqZ1bLgZ9ZTCbc+XQkhudefSh1YP9N5SfdqfLcLxa3p4UVP1GQ/ZbiXfdJdV/op4fze/boBF
muMfDL/6SR3K5FT5szOB9QirtZAJRVDPaSZASaGAVQiZWkrgZcH/Vyh/AAAA//8DAFBLAQItABQA
BgAIAAAAIQC2gziS/gAAAOEBAAATAAAAAAAAAAAAAAAAAAAAAABbQ29udGVudF9UeXBlc10ueG1s
UEsBAi0AFAAGAAgAAAAhADj9If/WAAAAlAEAAAsAAAAAAAAAAAAAAAAALwEAAF9yZWxzLy5yZWxz
UEsBAi0AFAAGAAgAAAAhAB1pnUUjAgAAIwQAAA4AAAAAAAAAAAAAAAAALgIAAGRycy9lMm9Eb2Mu
eG1sUEsBAi0AFAAGAAgAAAAhALjRgzPfAAAACgEAAA8AAAAAAAAAAAAAAAAAfQQAAGRycy9kb3du
cmV2LnhtbFBLBQYAAAAABAAEAPMAAACJBQAAAAA=
" stroked="f">

Figure 2. Activity of catalysts during in-situ HDO process

Figure 3. Selected TEM images of Ni/CeO2-C

 


Figure 2. Activity of catalysts during in-situ HDO process
Figure 3. Selected TEM images of Ni/CeO2-C
" v:shapes="_x0000_s1026" class="documentimage"> Calibri;mso-hansi-font-family:Calibri;mso-bidi-font-family:" times new roman mso-ansi-language:en-gb>case of water-only HDO reaction system. Regarding the
characterization of spent samples, no metal sintering and minor
concentration of carbon deposition were observed in the TEM images (Figure 3)
and also by XRD and Raman.

normal"> " times new roman mso-ansi-language:en-gb>

normal">4. Conclusions

mso-bidi-font-family:" times new roman>A novel
approach consisting on the combination of water splitting and subsequent hydrodeoxygenation (HDO) is proposed in this work with the
aim to suppress the supply of H2 to the HDO reactor. CeO2-C
supported catalysts performed high HDO ability compared to CeO2-supported
catalysts in guaiacol normal">in-situ HDO process. The high HDO activity of CeO2-C
supported catalysts is likely attributed to the high dispersion and small
particle size of active phase along with the high surface area of catalysts.
The proposed novel method by using available and cheap water as hydrogen source
in HDO reaction is an interesting alternative which opens new research
possibilities to achieve low-cost bio-oil upgrading process.

normal">

normal">References

lang=EN-US style='mso-fareast-language:ES'> style='mso-ansi-language:ES;mso-fareast-language:ES'> style='mso-spacerun:yes'> ADDIN EN.REFLIST

lang=EN-US style='mso-fareast-language:ES'>1. Jin, W.; Pastor-Perez, L.; Shen, D.;
Sepúlveda-Escribano, A.; Gu, S.; Reina, T. R., normal">ChemCatChem 2019, 11,
924-960.

2. Cheng, S.; Wei, L.; Alsowij, M. R.; Corbin, F.; Julson, J.;
Boakye, E.; Raynie, D., Journal of the
Energy Institute
2018, 91,
163-171.

3. Cheng, S.; Wei, L.; Julson,
J.; Muthukumarappan, K.; Kharel, P. R.; Cao, Y.; Boakye, E.; Raynie, D.; Gu,
Z., Journal of the Taiwan Institute of
Chemical Engineers
2017, 74,
146-153. mso-fareast-font-family:" times new roman mso-ansi-language:en-gb>