(560bn) A Computational Investigation of Catalytic Upgrading of CO2 to Methanol over Indium Oxide
AIChE Annual Meeting
2019
2019 AIChE Annual Meeting
Catalysis and Reaction Engineering Division
Poster Session: Catalysis and Reaction Engineering (CRE) Division
Wednesday, November 13, 2019 - 3:30pm to 5:00pm
In this work, we investigate potential reaction mechanisms using density functional theory (DFT) calculations and microkinetic modeling (MKM). Through methodical active site selection and extensive exploration of different reaction pathways, we generate an explicitly calculated reaction mechanism through DFT energy and vibrational frequency calculations. We compare paths to methanol and CO, i.e., the reverse water gas shift reaction to reveal what controls selectivity. Using the appropriate statistical thermodynamic models, we produce a comprehensive MKM parametrized using these DFT values that enabled us to evaluate the proposed mechanism against experimental data. Comparison to other literature mechanisms will also be presented. Finally, we investigate why this oxide is so selective by performing electronic structure calculation analysis and discussing catalyst and chemistry descriptors.
- Martin, O., A. J. Martin, et al. (2016). "Indium Oxide as a Superior Catalyst for Methanol Synthesis by CO2 Hydrogenation." Angewandte Chemie-International Edition 55(21): 6261-6265.