(560p) Ultrasound-Assisted Production of Ethyl Butyrate VIA a Lipase Cocktail | AIChE

(560p) Ultrasound-Assisted Production of Ethyl Butyrate VIA a Lipase Cocktail

Authors 

de Sousa Filho, F. C. - Presenter, Universidade da Integração Internacional da Lusofonia Afro-Brasileira
Monteiro, R. R. C. - Presenter, Universidade Federal do Ceará
S dos Santos, J. C. - Presenter, Universidade da Integração Internacional da Lusofonia Afro-Brasileira
de Freitas, R. M. F., Universidade da Integração Internacional da Lusofonia Afro-Brasileira
Gadelha, B. K. N., Universidade da Integração Internacional da Lusofonia Afro-Brasileira
de Oliveira, E. E. S., Universidade da Integração Internacional da Lusofonia Afro-Brasileira
Lima, P. J. M., Universidade Federal do Ceará
M de Souza, M. C., Universidade da Integração Internacional da Lusofonia Afro-Brasileira
/* Copyright 2012 Mozilla Foundation Copyright 2013 Lu Wang Apachine License Version 2.0 */ (function(){function b(a,b,e,f){var c=(a.className||"").split(/\s+/g);""===c[0]&&c.shift();var d=c.indexOf(b);0>d&&e&&c.push(b);0<=d&&f&&c.splice(d,1);a.className=c.join(" ");return 0<=d}if(!("classList"in document.createElement("div"))){var e={add:function(a){b(this.element,a,!0,!1)},contains:function(a){return b(this.element,a,!1,!1)},remove:function(a){b(this.element,a,!1,!0)},toggle:function(a){b(this.element,a,!0,!0)}};Object.defineProperty(HTMLElement.prototype,"classList",{get:function(){if(this._classList)return this._classList; var a=Object.create(e,{element:{value:this,writable:!1,enumerable:!0}});Object.defineProperty(this,"_classList",{value:a,writable:!1,enumerable:!1});return a},enumerable:!0})}})(); (function(){/* pdf2htmlEX.js: Core UI functions for pdf2htmlEX Copyright 2012,2013 Lu Wang and other contributors https://github.com/coolwanglu/pdf2htmlEX/blob/master/share/LICENSE */ var pdf2htmlEX=window.pdf2htmlEX=window.pdf2htmlEX||{},CSS_CLASS_NAMES={page_frame:"pf",page_content_box:"pc",page_data:"pi",background_image:"bi",link:"l",input_radio:"ir",__dummy__:"no comma"},DEFAULT_CONFIG={container_id:"page-container",sidebar_id:"sidebar",outline_id:"outline",loading_indicator_cls:"loading-indicator",preload_pages:3,render_timeout:100,scale_step:0.9,key_handler:!0,hashchange_handler:!0,view_history_handler:!0,__dummy__:"no comma"},EPS=1E-6; function invert(a){var b=a[0]*a[3]-a[1]*a[2];return[a[3]/b,-a[1]/b,-a[2]/b,a[0]/b,(a[2]*a[5]-a[3]*a[4])/b,(a[1]*a[4]-a[0]*a[5])/b]}function transform(a,b){return[a[0]*b[0]+a[2]*b[1]+a[4],a[1]*b[0]+a[3]*b[1]+a[5]]}function get_page_number(a){return parseInt(a.getAttribute("data-page-no"),16)}function disable_dragstart(a){for(var b=0,c=a.length;b=e.length||(e=e[a],e.loaded||this.pages_loading[a]))){var e=e.page,h=e.getAttribute("data-page-url");if(h){this.pages_loading[a]=!0;var d=e.getElementsByClassName(this.config.loading_indicator_cls)[0];"undefined"===typeof d&&(d=this.loading_indicator.cloneNode(!0), d.classList.add("active"),e.appendChild(d));var f=this,g=new XMLHttpRequest;g.open("GET",h,!0);g.onload=function(){if(200===g.status||0===g.status){var b=document.createElement("div");b.innerHTML=g.responseText;for(var d=null,b=b.childNodes,e=0,h=b.length;e=a?d.loaded?d.show():this.load_page(e):d.hide()}},update_page_idx:function(){var a=this.pages,b=a.length;if(!(2>b)){for(var c=this.container,e=c.scrollTop,c=e+c.clientHeight,h=-1,d=b,f=d-h;1=e?d=g:h=g;f=d-h}this.first_page_idx=d;for(var g=h=this.cur_page_idx,k=0;dc)break;f=(Math.min(c,l+f)-Math.max(e,l))/f;if(d===h&&Math.abs(f-1)<=EPS){g=h;break}f>k&&(k=f,g=d)}this.cur_page_idx=g}},schedule_render:function(a){if(void 0!==this.render_timer){if(!a)return;clearTimeout(this.render_timer)}var b=this;this.render_timer=setTimeout(function(){delete b.render_timer;b.render()},this.config.render_timeout)},register_key_handler:function(){var a=this;window.addEventListener("DOMMouseScroll",function(b){if(b.ctrlKey){b.preventDefault();var c=a.container, e=c.getBoundingClientRect(),c=[b.clientX-e.left-c.clientLeft,b.clientY-e.top-c.clientTop];a.rescale(Math.pow(a.config.scale_step,b.detail),!0,c)}},!1);window.addEventListener("keydown",function(b){var c=!1,e=b.ctrlKey||b.metaKey,h=b.altKey;switch(b.keyCode){case 61:case 107:case 187:e&&(a.rescale(1/a.config.scale_step,!0),c=!0);break;case 173:case 109:case 189:e&&(a.rescale(a.config.scale_step,!0),c=!0);break;case 48:e&&(a.rescale(0,!1),c=!0);break;case 33:h?a.scroll_to(a.cur_page_idx-1):a.container.scrollTop-= a.container.clientHeight;c=!0;break;case 34:h?a.scroll_to(a.cur_page_idx+1):a.container.scrollTop+=a.container.clientHeight;c=!0;break;case 35:a.container.scrollTop=a.container.scrollHeight;c=!0;break;case 36:a.container.scrollTop=0,c=!0}c&&b.preventDefault()},!1)},rescale:function(a,b,c){var e=this.scale;this.scale=a=0===a?1:b?e*a:a;c||(c=[0,0]);b=this.container;c[0]+=b.scrollLeft;c[1]+=b.scrollTop;for(var h=this.pages,d=h.length,f=this.first_page_idx;f= c[1])break}g=f-1;0>g&&(g=0);var g=h[g].page,k=g.clientWidth,f=g.clientHeight,l=g.offsetLeft+g.clientLeft,m=c[0]-l;0>m?m=0:m>k&&(m=k);k=g.offsetTop+g.clientTop;c=c[1]-k;0>c?c=0:c>f&&(c=f);for(f=0;fc.length;)c.push(null);var g=b||this.pages[this.cur_page_idx],d=g.view_position(),d=transform(g.ictm,[d[0],g.height()-d[1]]), g=this.scale,l=[0,0],m=!0,k=!1,n=this.scale;switch(c[1]){case "XYZ":l=[null===c[2]?d[0]:c[2]*n,null===c[3]?d[1]:c[3]*n];g=c[4];if(null===g||0===g)g=this.scale;k=!0;break;case "Fit":case "FitB":l=[0,0];k=!0;break;case "FitH":case "FitBH":l=[0,null===c[2]?d[1]:c[2]*n];k=!0;break;case "FitV":case "FitBV":l=[null===c[2]?d[0]:c[2]*n,0];k=!0;break;case "FitR":l=[c[2]*n,c[5]*n],m=!1,k=!0}if(k){this.rescale(g,!1);var p=this,c=function(a){l=transform(a.ctm,l);m&&(l[1]=a.height()-l[1]);p.scroll_to(f,l)};h.loaded? c(h):(this.load_page(f,void 0,c),this.scroll_to(f))}}}},scroll_to:function(a,b){var c=this.pages;if(!(0>a||a>=c.length)){c=c[a].view_position();void 0===b&&(b=[0,0]);var e=this.container;e.scrollLeft+=b[0]-c[0];e.scrollTop+=b[1]-c[1]}},get_current_view_hash:function(){var a=[],b=this.pages[this.cur_page_idx];a.push(b.num);a.push("XYZ");var c=b.view_position(),c=transform(b.ictm,[c[0],b.height()-c[1]]);a.push(c[0]/this.scale);a.push(c[1]/this.scale);a.push(this.scale);return JSON.stringify(a)}}; pdf2htmlEX.Viewer=Viewer;})(); try{ pdf2htmlEX.defaultViewer = new pdf2htmlEX.Viewer({}); }catch(e){}
ULTRASOUND-ASSISTED PRODUCTION OF ETHYL BUTYRATE VIA A
LIPASE COCKTAIL
Fernando C. de Sousa Filho
1
, Roberto M. F. de Freitas
1
, Bárbara K. N. Gadelha
1
,
Ellefson E. S. de Oliveira
1
, Rodolpho R. C. Monteiro
2
, Paula J. M. Lima
2
, Maria C. M
de Souza
1
and José C. S dos Santos
1,*
.
1
Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração
Internacional da Lusofonia Afro-Brasileira, CEP 62790-970, Redenção, CE, Brazil.
2
Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do
Pici, Bloco 709, CEP 60455-760 Fortaleza, CE, Brazil.
1. INTRODUCTION
Enzymes are highly specific and efficient biocatalysts that catalyze various
chemical and biochemical reactions under certain conditions of temperature, pH,
reaction medium, etc (BILAL, et al., 2018). Lipases are enzymes used in biocatalysis,
as they have a broad range of compatibility with several substrate species and high
stability under multiple conditions. In addition, lipase properties, including selectivity,
specificity and activity are easily modulated (SANTOS et al., 2015). The concept of
combi-lipases have an increasing interest for heterogeneous substrates, such as oils,
once the use of an individual lipase may hardly be “optimal” for all likely components
of the oils (ORTIZ et al., 2019).
Ultrasound is the sound energy at frequencies above the range that is audible to
humans (> 20 kHz) and which needs a medium to propagate. The positive effects of this
technology on enzyme activity and can its potential to accelerate enzymatic reactions,
show great potential for industrial applications. However, high frequencies and
potencies can cause disruption of the structure of the enzyme, causing denaturation of
this macromolecule, while low frequencies and potencies will not result in the desirable
effect of cavitation (BODESODE & RATHOD, 2014).
Flavors are composed of different organic chemicals, such as hydrocarbons,
alcohols, aldehydes, ketones, acids, esters or lactones. The low volatility and low
molecular weight are responsible for a series of sensorial sensations. Flavor esters are
widely found in nature and confer pleasant attributes with fruity, floral, spicy and
creamy aromas. These properties enable a wide variety of food applications in many
beverages, sweets, jellies, compounds, wines and dairy products.
Ethyl butyrate is an flavor ester obtained by esterifying a fatty acid or
monocarboxylic acid (butyric acid) with an alcohol (ethyl alcohol). This ester is an
important component of aromas of many fruits, for example: pineapple, passion fruit,
strawberry and apple (GUMEL; ANNUAR, 2016).
Hereupon, this communication has as main objective to determine the best
cocktail of Lipase B from Candida antarctica (CALB), Thermomyces lanuginosus
(TLL) and Rhizomucor miehei (RML) for the ultrasound-assisted production of ethyl
butyrate.
2. MATERIALS
Lipases from Thermomyces lanuginosus (immobilized on a silicate support,
Lipozyme TL-IM), Rhizomucor miehei (immobilized on an anion-exchange resin,
Lipozyme RM-IM) and lipase B from Candida antarctica (immobilized on a
macroporous resin, Novozym 435) were kindly donated by Novozymes (Madrid,
Spain). All other chemicals were of analytical grade and they have been used without
any further purification.
The equipment used in all experiments was an ultrasonic bath (Unique Inc.,
model USC 2800A, Brazil). The equipment presents the capacity volume of 9.5 L with
the following dimensions: 300 × 240 × 150 mm (length × width × height). Two disc
transducers were placed at the bottom of the reactor. The ultrasonic frequency was 37
kHz and the total ultrasonic power 300 W. Additionally, the equipment has temperature
control.
3. METHODOLOGY
In order to determine the best combination of lipases (TLL, RML and CALB)
for the production of ethyl butyrate, a 3-factor mixture design and triangular surface
analysis was performed using Statistica® 10 (Statsoft, USA). For the esterification, it
was considered a 1:1 molar ratio (butyric acid/ethyl alcohol) and a biocatalyst mass of
10% of the butyric acid mass. The reactions were conducted at ultrasonic radiation at 37
kHz and 300 W for 3 hours and 35 °C. The reactions were performed in triplicate and
the results expressed as means and standard deviations. Conversion was monitored by
determining the acid index through the Ca 5-40 AOCS method.
4. RESULTS AND DISCUSSIONS
The combinations of lipases (CAL-B, RML and TLL) resulting from the
simplex-centroid experimental design with interior points and centroid and their
respective conversion rates are presented in Table 1. As can be seen in Table 1, the best
cocktail of lipases for the ultrasound-assisted production of ethyl butyrate was that
proposed by run number 10, which has the same amount of each lipase in study,
achieving a conversion of 80.41%.

Table 1 – Experiments performed in the mixture design. Reaction medium: 1:1 molar
ratio (butyric acid/ethyl alcohol), biocatalyst mass of 10% of the butyric acid mass. The
reactions were conducted at ultrasonic radiation at 37 kHz and 300 W for 3 hours and
35 °C. Further information are given on Section 3.
RUN
CALB
RML
TLL
CONVERSION (%)
1
1.000
0.000
0.000
76.81 ± 2.32
2
0.000
1.000
0.000
35.80 ± 4.14
3
0.000
0.000
1.000
46.55 ± 1.56
4
0.500
0.500
0.000
77.76 ± 2.57
5
0.500
0.000
0.500
38.96 ± 1.83
6
0.000
0.500
0.500
37.84 ± 3.66
7
0.667
0.167
0.167
79.25 ± 0.89
8
0.167
0.667
0.167
46.97 ± 3.81
9
0.167
0.167
0.667
37.74 ± 2.45
10
0.333
0.333
0.333
80.41 ± 0.94
Analyzing the behavior of each lipase in individual, CAL-B (76.81%) has
presented the best conversion when compared to TLL (46.55%) and RML (35.80%),
respectively. Also, for the combinations of only two lipases, CALB-RML and CALB-
TLL have shown the better values than that for RML-TLL (37.84%). By these results
and by analyzing the Pareto chart (Figure 1), for the ultrasound assisted production of
ethyl butyrate, it can be stated that CALB, among the lipases studied, has the major
effect on the conversion. TLL and RML are both 1,3-regio specific lipases, whereas
CALB is a non-specific lipase. The combination of the 1,3-specific with non-specific
lipases may have increased the reaction rate by attacking the different parts of the
substrates, showing the specificity of RML and TLL for the substrate and the high
activity of CALB, even being a non-specific lipase.

Figure 1 – Pareto chart. Reaction medium: 1:1 molar ratio (butyric acid/ethyl alcohol),
biocatalyst mass of 10% of the butyric acid mass. The reactions were conducted at
ultrasonic radiation at 37 kHz and 300 W for 3 hours and 35 °C. Further information are
given on Section 3.
Besides, the results shown above point out the efficiency of the ultrasonic
technology for the production of ethyl butyrate when compared to traditional
techniques. Souza et al., (2017), using CALB obtained conversions higher than 90% for
the production of ethyl butyrate under 25 °C, 150 rpm and a molar ratio of 1:1 after 8
hours of reaction, while in this study conversions of around 80% were obtained after
only 3 hours of reaction. Badgujar and Bhanage (2015) produced benzyl butyrate, anisil
butyrate and o-cresyl butyrate using the ultrasound technique and obtained a conversion
yield of 99% after 3 hours of reaction at 52 °C, while in this study conversions of
around 80% were obtained under 35 °C.
5. CONCLUSIONS
Here, the use of a cocktail of lipases for the assisted-production of ethyl butyrate
was proposed. The optimum combination was found to be 33,3% of RML, 33,33% of
TLL and 33% of CALB, showing the specificity of RML and TLL for the substrate and
the high activity of CALB, even being a non-specific lipase. Besides, the results shown
above point out the efficiency of the ultrasonic technology for the production of ethyl
butyrate when compared to traditional techniques.

REFERENCES
AOCS – American Oil Chemists Society; Official and Tentative Methods, 3ª ed.,
Chicago, 1985, vol.
BADGUJAR, K.C.; BHANAGE, B.M. The combine use of ultrasound and lipase
immobilized on co-polymer matrix for efficient biocatalytic application studies.
Journal of Molecular Catalysis B: Enzymatic, v. 122, p.255-264, 2015. Elsevier BV.
BANSODE, S.R.; RATHOD, V.K. Ultrasound assisted lipase catalysed synthesis of
isoamyl butyrate. Process Biochemistry, v. 49, n. 8, p.1297-1303, 2014. Elsevier BV.
BILAL, M. et al. Magnetic nanoparticles as versatile carriers for enzymes
immobilization: A review. International Journal of Biological Macromolecules, v.
120, p.2530-2544, 2018. Elsevier BV. http://dx.doi.org/10.1016/j.ijbiomac.2018.09.025.
GUMEL, A. M.; ANNUAR, M.S.M. Thermomyces lanuginosus lipase-catalyzed
synthesis of natural flavor esters in a continuous flow microreactor. 3 Biotech, [s.l.], v.
6, n. 1, p.6-24, 11 jan. 2016. Springer Nature. http://dx.doi.org/10.1007/s13205-015-
0355-9.
ORTIZ, C. et al. Novozym 435: THE “PERFECT” LIPASE IMMOBILIZED
BIOCATALYST?. Catalysis Science & Technology, p.1-126, 2019. Royal Society of
SANTOS, J.C.S. dos et al. Versatility of divinylsulfone supports permits the tuning of
CALB properties during its immobilization. Rsc Advances, v. 5, n. 45, p.35801-35810,
2015. Royal Society of Chemistry (RSC). http://dx.doi.org/10.1039/c5ra03798k.
SOUZA, M.C.M. de et al. Production of flavor esters catalyzed by lipase B from Candida
antarctica immobilized on magnetic nanoparticles. Brazilian Journal of Chemical
Engineering, v. 34, n. 3, p.681-690, 2017. FapUNIFESP (SciELO).