(599c) Towards Digital Design of Crystals: Predicting Absolute Chemical Potentials for Solid, Solution and Gas Phases
AIChE Annual Meeting
2019
2019 AIChE Annual Meeting
Separations Division
Nucleation and Growth II
Wednesday, November 13, 2019 - 4:15pm to 4:36pm
Solubility prediction using atomistic simulations is a challenging task. The solubility prediction of NaCl took nearly a decade of research efforts. The solubility prediction of polyatomic molecules is an ongoing effort and we have developed a new approach that employs independent predictions of absolute chemical potentials in the solid and solution phases without having a common starting reference system. For the solid phase we apply the Einstein crystal method in its unaltered form although we have extended it differently from some of the previous works to compute the free energy of the molecular crystal (solid). In order to compute the absolute chemical potential in the solution phase, we have developed a new gas phase reference system to compute the absolute chemical potential of an isolated polyatomic gas molecule. To which we add the solvation free energy of the molecule at a given solute concentration to give the absolute chemical potential in the solution phase.
We leverage and demonstrate the computational tools developed so far to predict the solid-vapor equilibrium curve for succinic acid (our model compound), i.e., predict its sublimation vapor pressure as a function of temperature. We find excellent agreement between our predicted results and experiments in the literature. Thus, having tested our methodology we are currently applying it to the solubility problem.