(638e) Reverse Perfluorocarbon Emulsions for Pulmonary Drug Delivery: Effects of Emulsion Formulation on Drug Mass Transfer
AIChE Annual Meeting
2019
2019 AIChE Annual Meeting
Food, Pharmaceutical & Bioengineering Division
Drug Delivery I
Thursday, November 14, 2019 - 9:12am to 9:30am
Water/PFC emulsions were prepared via sonication with constant antibiotic concentration in the dispersed aqueous phase and varying fluorosurfactant concentrations. The emulsion was dispensed into a cylindrical well within inoculated agar to monitor delivery of emulsified antibiotic over 24 hours. Antibiotic delivery peaked at 55% with an intermediate fluorosurfactant concentration. Lower fluorosurfactant concentrations failed to sufficiently encapsulate antibiotic and, thus, had less drug delivery. Higher fluorosurfactant concentrations also had less drug delivery, suggesting either aqueous droplets are unable to freely diffuse into the agar or the diffusional capability of the drug is hindered.
This phenomenon was further explored using fluorescein as a drug mimic. Water/PFC emulsions were prepared via sonication with constant fluorescein concentration in the dispersed aqueous phase, varying water:PFC volume ratios and varying fluorosurfactant concentrations. The emulsion was quiescently contacted with a saline receiving phase in a cuvette to monitor fluorescein uptake over 72 h. Less than 60% of the fluorescein was transferred to the saline phase over 72 h. Mass transfer rates were strongly correlated with fluorosurfactant concentration and the fluorosurfactant:water ratio in a manner suggesting that the rate of aqueous emulsion droplet coalescence with the receiving phase was rate determining, rather than mass transfer through the continuous PFC phase. For a given fluorosurfactant concentration, the droplets with the highest drug concentration (lowest aqueous volume percent) had the lowest mass transfer.
Thus, experiments were conducted to measure coalescence times for individual aqueous droplets placed at a saline-PFC interface. Coalescence rates were also strongly correlated with fluorosurfactant concentration, primarily via the fluorosurfactant effect on the stability of the thin PFC film separating the drop from the bulk saline phase.
Work is ongoing to fully map the correlations between emulsion formulation, stability, fluorescein mass transfer and droplet/receiving phase coalescence rate, including the specific effects of the type of PFC and fluorosurfactant.