(6ie) Granular Composite-Enabled Multi-Scale Dynamic Responsive Materials
AIChE Annual Meeting
2019
2019 AIChE Annual Meeting
Meet the Faculty and Post-Doc Candidates Poster Session -- Sponsored by the Education Division
Meet the Faculty and Post-Doc Candidates Poster Session
Sunday, November 10, 2019 - 1:00pm to 3:00pm
Bio-materials for multi-scale chemical and mechanical dynamics. Reconfigurable photonic crystals and shape memory polymers.
Teaching Interests:
Materials of Chemical Engineering, Energy Transport phenomena, Material and Energy Balances, structure and properties of polymer.
Living tissues are an integrated, multi-scale architecture consisting of dense cell ensembles and extracellular matrices (ECM) that cooperatively enable the excellent mechanical properties and dynamic responsiveness. One key challenge in creating tissue-like materials is to identify cell-like building blocks that can synergistically respond to external stress with existing ECM-like polymer platforms. Here, we designed a granular material-enabled hybrid gel, including cell-like starch granules embedded in ECM-like synthetic hydrogel matrices that readily exhibited dynamic reconfigurable effects upon mechanical training. Multi-scale and in-situ characterizations reveal that the unique combination between microscopic (chemical bonding) and mesoscopic (physical friction) interactions from starch granules cooperatively give rise to the tissue-like properties, such as dynamic responsiveness, strain-stiffening, and self-healability. Our results suggest that granular materials, a largely ignored component for biomimetics, can be critical in enabling dynamic behaviors in artificial materials and even future adaptive and active metamaterials.