(197x) How Do Self-Interaction Errors Associated with Stretched Bonds Affect Barrier Height Predictions?
AIChE Annual Meeting
2023
2023 AIChE Annual Meeting
Computational Molecular Science and Engineering Forum
Poster Session: Computational Molecular Science and Engineering Forum
Monday, November 6, 2023 - 3:30pm to 5:00pm
In the context of barrier heights, this allows an analysis of how the self-interaction correction (SIC) for each orbital contributes to the calculated barriers using FermiâLöwdin orbitals. We hypothesize that the SIC contribution to the reaction barrier comes mainly from a limited number of orbitals that are directly involved in bond-breaking and bond-making in the reaction transition state. We call these participant orbitals (POs), in contrast to spectator orbitals (SOs) which are not directly involved in changes to the bonding.
We test this hypothesis for the reaction barriers of the BH76 benchmark set of reactions. We find that the stretched-bond orbitals indeed make the largest individual SIC contributions to the barriers. These contributions increase the barrier heights relative to LSDA, which underpredicts the barrier. However, the full stretched-bond hypothesis does not hold in all cases for either PZSIC or LSIC. There are many cases where the total SIC contribution from the SOs is significant and cannot be ignored. The size of the SIC contribution to the barrier height is a key indicator. A large SIC correction is correlated to a large LSDA error in the barrier, showing that PZSIC properly gives larger corrections when corrections are needed most. A comparison of the performance of PZSIC and LSIC shows that the two methods have similar accuracy for reactions with large LSDA errors, but LSIC is clearly better for reactions with small errors. We trace this to an improved description of reaction energies in LSIC.