(278d) Adsorption-Induced Deformation of Zeolites 4A and 13X: Experimental and Molecular Simulation Study | AIChE

(278d) Adsorption-Induced Deformation of Zeolites 4A and 13X: Experimental and Molecular Simulation Study

Authors 

Gor, G. - Presenter, New Jersey Institute of Technology
Emelianova, A., New Jersey Institute of Technology
Balzer, C., Bavarian Center for Applied Energy Research
Reichenauer, G., Bavarian Center for Applied Energy Research
Gas adsorption in zeolites can lead to adsorption-induced deformation, which can significantly impact the adsorption and diffusive properties of the system. In this study, we conducted both experimental investigations and molecular simulations to understand the deformation of zeolites 13X and 4A during carbon dioxide adsorption at 273 K. To measure the sample's adsorption isotherm and strain simultaneously, we used a commercial sorption instrument with a custom-made sample holder equipped with a dilatometer. Our experimental data showed that while the zeolites exhibited similar adsorption isotherms, their strain isotherms differed significantly. To gain more insight into the adsorption process and adsorption-induced deformation of these zeolites, we employed a coupled Monte Carlo and molecular dynamics simulations with atomistically detailed models of the frameworks. Our modeling results were consistent with the experimental data and helped us identify reasons behind the different deformation behavior of the considered structures. Our study also revealed the sensitivity of the strain isotherm of zeolites to pore size and structural features, suggesting that measuring adsorption-induced deformation could serve as a complementary method for material characterization and provide guidelines for related technical applications.