(326i) Developing Multiscale Modeling Approaches to Understand Electrochemical Processes for Energy Conversion
AIChE Annual Meeting
2023
2023 AIChE Annual Meeting
Engineering Sciences and Fundamentals
Electrochemical Fundamentals: Faculty Candidate Session I
Monday, November 6, 2023 - 5:18pm to 5:30pm
In my research, we have addressed different aspects of the aforementioned challenges using a combination of simulation techniques including density functional theory based molecular dynamics (DFT-MD), ab-initio microkinetic simulations and continuum transport modeling. For instance, we used DFT-MD simulations of metal-water interfaces to understand their structure, estimate solvation energies and identify trends in the potential of zero charge.[2,3] We identify simple descriptors to predict these quantities, thereby circumventing the need for expensive DFT-MD simulations. Using constant-potential DFT simulations (in combination with experiments), we elucidate reaction mechanisms of complex multi-step electrocatalytic reactions including electrochemical CO2 reduction [4] and electrochemical biomass conversion [5,6]. These studies demonstrate the importance of understanding the pH and potential dependence of reactions for mechanistic analysis. We extend our observations to understand the effects of the pH and potential to establish guidelines for product selectivity in electrochemical CO2 reduction [7]. Furthermore, we present mechanisms behind the effects of the reaction environment (i.e. electrolyte pH, cations and anions) on the activity and selectivity of electrochemical processes. [8, 9] Finally, we develop a multi-scale approach that couples ab-initio microkinetics and continuum transport models to resolve the reaction environment during electrochemical CO2 reduction [10]. This study highlights the need for multi-dimensional, multiscale approaches to develop an in-depth understanding of electrochemical processes.
References (#: Co-first author, *: Corresponding author):
[1] Z. W. Seh , J. Kibsgaard , C. F. Dickens , I. Chorkendorff , J. K. Nørskov and T. F. Jaramillo , Science, 355 (2017)
[2] S. Liu, S. Vijay, M. Xu, A. Cao, H. Prats, G. Kastlunger, H. H. Heenen, N. Govindarajan*, Submitted (2023)
[3] S. R. Kelly#, H. H. Heenen#, N. Govindarajan#, K. Chan, J. K. Nørskov, J. Phys. Chem. C., 126 (2022)
[4] G. Kastlunger, L. Wang, N. Govindarajan, H. H. Heenen, S. Ringe, T. Jaramillo, C. Hahn, K. Chan, ACS Catalysis, 12 (2022)
[5] S. Liu#, N. Govindarajan#, H. Prats, K. Chan, Chem Catalysis, 2 (2022)
[6] S. Liu, Z. Mukadam, S. B. Scott, S. C. Sarma, M. M. Titirici, K.Chan, N. Govindarajan*, I. E. L. Stephens*, G. Kastlunger*, ChemRxiv (2023)
[7] G. Kastlunger, H. H. Heeenen, N. Govindarajan, ACS Catalysis, 13 (2023)
[8] N. Govindarajan, G. Kastlunger, H. H. Heenen, K. Chan, Chemical Science, 13 (2022)
[9] N. Govindarajan, A. Xu, K. Chan, Science, 375 (2022)
[10] N. Govindarajan, et al., In preparation (2023)