(84bg) Effect of Cathode Precursor Particle Size Distribution on Cobalt-Free Lithium-Nickel-Manganese-Oxide Battery Performance | AIChE

(84bg) Effect of Cathode Precursor Particle Size Distribution on Cobalt-Free Lithium-Nickel-Manganese-Oxide Battery Performance

With increasing demands of lithium-ion batteries for electric vehicles (EVs), there is growing need to reduce environment waste and cost1–3. Cobalt-free lithium-nickel-manganese-oxide is one eco-friendly cathode material. It is still not well understood whether and how size distribution of precursor microparticles for cathode material affects lithium-ion battery performance. This study first generate oxalate precursor microparticles of uniform and tunable sizes based on slug flow reactor/crystallizer designs4–8; then combine these precursor microparticles towards designed size distribution for characterization, such as specific capacity and cycling performance.

References

(1) Darbar, D.; Malkowski, T.; Self, E. C.; Bhattacharya, I.; Reddy, M. V. V.; Nanda, J. An Overview of Cobalt-Free, Nickel-Containing Cathodes for Li-Ion Batteries. Mater. Today Energy 2022, 30, 101173.

(2) Deng, H.; Belharouak, I.; Cook, R. E.; Wu, H.; Sun, Y.-K.; Amine, K. Nanostructured Lithium Nickel Manganese Oxides for Lithium-Ion Batteries. J. Electrochem. Soc. 2010, 157 (4), A447.

(3) Mallick, S.; Patel, A.; Sun, X.-G.; Paranthaman, M. P.; Mou, M.; Mugumya, J. H.; Jiang, M.; Rasche, M. L.; Lopez, H.; Gupta, R. B. Low-Cobalt Active Cathode Materials for High-Performance Lithium-Ion Batteries: Synthesis and Performance Enhancement Methods. J. Mater. Chem. A 2023, 11 (8), 3789–3821.

(4) Jiang, M.; Zhu, Z.; Jimenez, E.; Papageorgiou, C. D.; Waetzig, J.; Hardy, A.; Langston, M.; Braatz, R. D. Continuous-Flow Tubular Crystallization in Slugs Spontaneously Induced by Hydrodynamics. Cryst. Growth Des. 2014, 14 (2), 851–860.

(5) Nightingale, A. M.; Phillips, T. W.; Bannock, J. H.; de Mello, J. C. Controlled Multistep Synthesis in a Three-Phase Droplet Reactor. Nat. Commun. 2014, 5 (1), 3777.

(6) Mou, M.; Jiang, M. Fast Continuous Non-Seeded Cooling Crystallization of Glycine in Slug Flow: Pure α-Form Crystals with Narrow Size Distribution. J. Pharm. Innov. 2020, 15 (2), 281–294.

(7) Mou, M.; Patel, A.; Mallick, S.; Jayanthi, K.; Sun, X. G.; Paranthaman, M. P.; Kothe, S.; Baral, E.; Saleh, S.; Mugumya, J. H.; et al. Slug Flow Coprecipitation Synthesis of Uniformly-Sized Oxalate Precursor Microparticles for Improved Reproducibility and Tap Density of Li(Ni0.8Co0.1Mn0.1)O2 Cathode Materials. ACS Appl. Energy Mater. 2022, 0–11.

(8) Mou, M.; Patel, A.; Mallick, S.; Jayanthi, K.; Sun, X.-G.; Paranthaman, P.; Kothe, S.; Baral, E.; Saleh, S.; Mugumya, J. H.; et al. Slug Flow Coprecipitation Synthesis of Uniformly-Sized Oxalate Precursor Microparticles for Improved Reproducibility and Tap Density of Li(Ni 0.8 Co 0.1 Mn 0.1 )O 2 Cathode Materials. ACS Appl. Energy Mater. 2023, 6, 3213–3224.