(141c) Palladium Sorbents for High Temperature Capture of Mercury, Arsenic, and Selenium from Fuel Gas
AIChE Spring Meeting and Global Congress on Process Safety
2008
2008 Spring Meeting & 4th Global Congress on Process Safety
Liaison Functions
Multi-Component Control in Power Generation
Tuesday, April 8, 2008 - 3:00pm to 3:30pm
Abstract:
In gasification for power generation, the removal of mercury by sorbents at elevated temperatures preserves the high thermal efficiency of the integrated gasification combined cycle system. Unfortunately, most sorbents will display poor capacity for elemental mercury at elevated temperatures. Previous experience with sorbents in flue gas has allowed for judicious selection of potential high temperature candidate sorbents. The capacities of many sorbents for elemental mercury from nitrogen, as well as from different simulated fuel gases at temperatures from 400 -700 degrees F, were determined. The simulated fuel gas compositions contain varying concentrations of mercury, arsine, hydrogen selenide, carbon monoxide, hydrogen, carbon dioxide, moisture, and hydrogen sulfide.
Palladium is an attractive sorbent candidate for the removal of mercury from fuel gases at elevated temperatures. In addition, preliminary results suggest that palladium has excellent potential for arsenic and selenium capture from fuel gases, making it capable of multi-pollutant capture. A license agreement has been signed by the United States Department of Energy and Johnson Matthey for further development of the sorbents. Future sorbent development for trace metal capture from fuel gases will be discussed.