(51g) Dynamic Scheduling for Optimal Decoking Operation of Cracking Furnace System
AIChE Spring Meeting and Global Congress on Process Safety
2012
2012 Spring Meeting & 8th Global Congress on Process Safety
The 24th Ethylene Producers’ Conference
Ethylene Plant Technology - Fundamentals and Innovation
Tuesday, April 3, 2012 - 9:40am to 10:05am
Thermal cracking process employs multiple cracking furnaces in parallel to convert various hydrocarbon feedstocks to multiple smaller-molecular hydrocarbon products. The operation is a typical semi-continuous dynamic process, where cracking furnaces have to be periodically shut down for hot maintenance (e.g., decoking). Given the data of multiple feed characteristics, different furnace performances, various sale income of products and manufacturing costs, as well as specified operational constraints, an optimal decoking policy for the entire cracking system has to be determined to achieve the best economic performance of an ethylene cracking furnace system. In practice, because of the feed supply and maintenance uncertainties, the furnace decoking activities are better to be conducted in a dynamic and reactive way, by which the entire furnace system operations can be timely reconciliated once the impact of an uncertainty has triggered the projection of necessary operational change. Thus, the feeds from the new delivery and the leftover inventories can be timely, feasibly, and optimally allocated to available cracking furnaces to obtain the maximum average net profit for the coming operating time period.
Facing this challenge, this paper develops a novel reactive scheduling model to help generating dynamic decoking strategy for the entire furnace system. It can optimize multiple-feed assignments, running length of each batch operation, and decoking sequence for every furnace in the system based on the new feed deliveries, the leftover feeds, and current furnace operating conditions. It also simultaneously addresses major scheduling issues for real cracking furnace operations, such as non-simultaneous decoking, secondary ethane cracking, and seamless rescheduling. The developed model is solved by an effective solving strategy. The efficacy of the study and its significant economic potential are demonstrated by comprehensive case studies
Checkout
This paper has an Extended Abstract file available; you must purchase the conference proceedings to access it.
Do you already own this?
Log In for instructions on accessing this content.
Pricing
Individuals
2012 Spring Meeting & 8th Global Congress on Process Safety
AIChE Pro Members | $150.00 |
AIChE Graduate Student Members | Free |
AIChE Undergraduate Student Members | Free |
AIChE Explorer Members | $225.00 |
Non-Members | $225.00 |
The 24th Ethylene Producers’ Conference only
AIChE Pro Members | $100.00 |
Fuels and Petrochemicals Division Members | Free |
AIChE Graduate Student Members | Free |
AIChE Undergraduate Student Members | Free |
AIChE Explorer Members | $150.00 |
Non-Members | $150.00 |