(48a) CFD Simulation of a Lab-Scale Bubble Column
AIChE Spring Meeting and Global Congress on Process Safety
2016
2016 AIChE Spring Meeting and 12th Global Congress on Process Safety
Process Development Division
Design, Construction and Operation of Unit Operations Labs and Pilot Plants II
Monday, April 11, 2016 - 3:30pm to 4:00pm
In this contribution we have numerically investigated a 3D lab scale bubble column to validate the predictive capabilities of the commercial STAR-CCM+ CFD solver by CD-adapco. For the simulation of the two phase flow, an Eulerian-Eulerian approach was used. The influence of several forces which define the interactions between the continuous water phase and the dispersed gas phase is investigated, which includes, amongst others, drag force, lift force, turbulent dispersion force, virtual mass force and turbulence induced by bubbles. Bubble size distribution as well as bubble break-up and coalescence is incorporated by using the S-gamma model proposed by Lo[1].
Validation is done with respect to the gas plume oscillation frequency, liquid and bubble velocity and gas holdup against published data by Pfleger[2] and Diaz[3]. A reasonable agreement between the numerical and experimental results was found. Further the importance of the different interaction forces could be shown. A mesh study was conducted to compare calculation time and accuracy of the results with respect to the used cell types, hexahedrons and polyhedrons.
In the second part of this contribution, the oxygen transfer from the gas bubbles to the continuous water phase is investigated. The overall mass transfer coefficient is compared with literature data and also shows a reasonable agreement.
[1] Lo, S. & Zhang, D. (2009); J. Comp. Multiphase Flows (1), pp. 23-38
[2] Pfleger, D.; Gomes, S.; Gilbert, N. & Wagner, H.G. (1999); Chem. Eng. Sci. (54), pp. 5091-5099
[3] Diaz, M.E.; Montes, F.J. & Galan, M.A. (2008); Chem. Eng. Proc. (47), pp. 1867 - 1876