(78b) Transport of Water and Oil Droplets Entrained in Gas Phase for Larger Diameter Air-Oil-Water Low Liquid Loading Flow in Horizontal and Near-Horizontal Pipe
AIChE Spring Meeting and Global Congress on Process Safety
2016
2016 AIChE Spring Meeting and 12th Global Congress on Process Safety
4th International Conference on Upstream Engineering and Flow Assurance
Multiphase Flow Applications I
Tuesday, April 12, 2016 - 8:25am to 8:50am
The entrainment fraction was highly sensitive to gas flow rate. The effect of liquid flow rate and inclination was less significant. Although entrainment fraction tended to increase with change in inclination from -2 to +2°, the effect diminished as gas flow rate increased. Entrainment of water was higher in air-oil-water three phase flow compared to air-water two-phase flow. Thus, entrainment of water which is the dispersed phase was enhanced by the oil continuous phase. The fraction of water in the entrained liquid decreased with increasing distance from bottom of the pipe due to higher settling velocity of water compared to that of oil.
An approach to modeling of the water and oil entrainment is presented assuming homogenous oil-water mixing in the liquid phase. This approach assumes stratified atomization flow pattern, which is predominant flow pattern for low liquid loading flow conditions. The approach suggested in current study for determination of entrainment fraction in low-liquid loading fairs better than the available correlations in describing the functional dependence of entrainment fraction on superficial liquid velocity. This approach is extended to three-phase flow by assuming that the deposition of the entrained water and oil drops takes place independent of each other. Uniform distribution of water in oil continuous phase is assumed to predict rate of atomization, which matches the experimental observations except at lower gas velocity. For low gas flow rate (vSG < 19 m/s) investigated in this study, the proposed correlation over predicts amount of water entrained in the gas phase.