(64c) Big Data Approach to Fault Detection and Diagnosis in Batch Processes Using Nonlinear SVM-Based Feature Selection
AIChE Spring Meeting and Global Congress on Process Safety
2017
2017 Spring Meeting and 13th Global Congress on Process Safety
3rd Big Data Analytics
Big Data Analytics and Statistics I
Tuesday, March 28, 2017 - 9:00am to 9:30am
Batch reactor processes are widely used in chemicals, food, and pharmaceutical industry. These processes involve a considerable number of interconnected variables. In addition to inherent non-stationarity, batch processes are characterized with finite duration, nonlinear response, and batch-to-batch variability [10-12]. High complexity as well as dimensionality of batch processes impose a big challenge in fault diagnosis. Most novel techniques for fault detection and identification have focused on continuous processes, and the need of monitoring algorithm development for batch processes is evident [13].
We present a new data-driven framework for process monitoring and intervention in batch processes. Central to the framework are novel theoretical and algorithmic developments in support vector machine-based dimensionality reduction which improve accuracy, guide fault diagnosis, and encapsulate highly nonlinear relationships. We will discuss critical data processing and feature extraction steps specific to batch processing. Our methods will be applied to a recent extensive benchmark dataset [13] which features data describing 90,400 batches with numerous and diverse fault types. The analysis framework aims for early detection of faulty batches and enables intervention to reduce loss of profit.
References
1. Floudas, C. A., Niziolek, A. M., Onel, O., & Matthews, L. R. (2016). MultiâScale Systems Engineering for Energy and the Environment: Challenges and Opportunities. AIChE Journal.
2. Subramanian, S., Ghouse, F., & Natarajan, P. (2014). Fault diagnosis of batch reactor using machine learning methods. Modelling and Simulation in Engineering, 2014, 15.
3. Joe Qin, S. (2003). Statistical process monitoring: basics and beyond.Journal of chemometrics, 17(8â9), 480-502.
4. Downs, J. J., & Vogel, E. F. (1993). A plant-wide industrial process control problem. Computers & chemical engineering, 17(3), 245-255.
5. Birol, G., Ãndey, C., & Cinar, A. (2002). A modular simulation package for fed-batch fermentation: penicillin production. Computers & Chemical Engineering, 26(11), 1553-1565.
6. Van den Kerkhof, P., Gins, G., Vanlaer, J., & Van Impe, J. F. (2012). Dynamic model-based fault diagnosis for (bio) chemical batch processes. Computers & Chemical Engineering, 40, 12-21.
7. Wuyts, S., Gins, G., Van den Kerkhof, P., & Van Impe, J. (2015). Fault identification in batch processes using process data or contribution plots: A comparative study. IFAC-PapersOnLine, 48(8), 1282-1287.
8. Chiang, L. H., Braatz, R. D., & Russell, E. L. (2001). Fault Detection and Diagnosis in Industrial Systems. Springer Science & Business Media.
9. Mahadevan, S., & Shah, S. L. (2009). Fault detection and diagnosis in process data using one-class support vector machines. Journal of Process Control, 19(10), 1627-1639.
10. Dahl, K. S., Piovoso, M. J., & Kosanovich, K. A. (1999). Translating third-order data analysis methods to chemical batch processes. Chemometrics and intelligent laboratory systems, 46(2), 161-180.
11. Smilde, A. K. (2001). Comments on threeâway analyses used for batch process data. Journal of Chemometrics, 15(1), 19-27.
12. van Sprang, E. N., Ramaker, H. J., Westerhuis, J. A., Gurden, S. P., & Smilde, A. K. (2002). Critical evaluation of approaches for on-line batch process monitoring. Chemical Engineering Science, 57(18), 3979-3991.
13. Van Impe, J., & Gins, G. (2015). An extensive reference dataset for fault detection and identification in batch processes. Chemometrics and Intelligent Laboratory Systems, 148, 20-31.