In this paper, the authors describe how thermal runaways can occur in BESS and evaluate potential blast impacts and resulting structural response due to release of flammable gas mixtures from BESS systems. Most current Liâion battery cells contain flammable electrolyte that can become a hazard if a cell is breached. In addition, Liâion batteries have the potential to eject flammable decomposition gases once they enter in thermal runaway where the composition of the battery gas produced by the Liâion batteries is typically provided by the UL 9540A test standard. Once the gas composition is determined, the combustion properties of the flammable gas mixture can be used to predict blast loads using an internal deflagration scenario (explosion confined in an enclosure) or as an open field vapor cloud explosion scenario (explosion outside an enclosure).
Finally, this paper will discuss how the blast load predictions for the BESS systems can then be utilized to develop compound blast contours for the BESS facility site for personnel injuries and/or building damage. Examples will be provided where the structural response of buildings in the vicinity of a BESS site is assessed against the predicted blast using screening methodologies (for offsite, or far-field buildings) and dynamic structural analysis methods such as Single Degree of Freedom (SDOF) analysis methodologies (for on-site or nearfield buildings). The BESS enclosures themselves can also be analyzed using SDOF as well as analyzed for debris hazard potential.
Presenter(s)
Language
Pricing
Individuals
AIChE Member Credits | 0.5 |
AIChE Pro Members | $19.00 |
Employees of CCPS Member Companies | Free |
AIChE Graduate Student Members | Free |
AIChE Undergraduate Student Members | Free |
AIChE Explorer Members | $29.00 |
Non-Members | $29.00 |