![](https://www.aiche.org/sites/default/files/images/conference/logo/11annual.png)
![](https://www.aiche.org/sites/default/files/images/conference/logo/11annual.png)
Based on the multi-scale model, a novel method is proposed to derive the global stability condition to guarantee the stable operation of FBR. The resulting analytical stability condition will be verified by numerical simulations. The particulate process in FBR is complex and typically has very few measurements, inventory control is a simple method for control of complex systems and thus has potential for industrial application. We apply inventory control strategy to control particle size distribution to improve the performance of the silicon production process. Due to the lack of knowledge of the reaction coefficient, which is used in population balance to describe the mass transfer rate from gas phase to dispersed phase, an on-line estimator based on adaptive mechanism will be developed to track experimental behavior more accurately and in addition to enhance robustness of the inventory control system.