(115c) Collisional Dissipation Rate of Flexible Rods Measured Using Driven and Non-Driven DEM Simulations
World Congress on Particle Technology
2018
8th World Congress on Particle Technology
Particle Interactions
Interparticle Forces II
Wednesday, April 25, 2018 - 3:30pm to 3:52pm
Homogeneous cooling system (HCS) and shear-flow (SF) simulations are used to investigate the effect of particle flexibility on the dissipation rate. As particles transition from rigid to flexible, new vibrational and potential energy degrees of freedom are introduced and accounted for in the energy loss due to collisions. As a particle becomes more flexible (decrease in Youngâs modulus) the collision frequency decreases due to increased contact time. Thus, in systems where no energy is lost due to flexibility, the collisional dissipation rate decreases. The bond damping coefficient, describes energy loss due to flexibility, is found to be a more significant contribution to the collisional dissipation rate compared to the Youngâs modulus and coefficient of restitution. As the bond damping coefficient increases, the collisional dissipation rate increases until it reaches a plateau. The effect of the coefficient of restitution and bond damping coefficient on the dissipation rate can be isolated and summed to create a model that is applicable for two-fluid simulations.