(54bk) Material Optimization of Perovskite Films using High Throughput Synthesis and Multi-Dimensional Analysis
World Congress on Particle Technology
2018
8th World Congress on Particle Technology
Poster Sessions
World Congress on Particle Technology Poster Session
Tuesday, April 24, 2018 - 11:45am to 1:15pm
To overcome these limitations, we follow a fully automated approach, which allows automated high throughput (HT) synthesis and HT characterization of perovskites with high accuracy. As an efficient route to explore the parameter space, we use design of experiments (DoE) to find optimized settings for process parameters such as synthesis and annealing time and temperature, but also material aspects like the molar ratio of the reactants.
For all experiments, a Chemspeed© technologies (CST) swing XL platform with a liquid handling tool and a heatable shaking rack was used. The robotic platform is enclosed within an Mbraun© glovebox with inert atmosphere (Nitrogen). After precursor preparation, deposition was realized by a liquid handling tool on glass substrates inserted in a customized aluminum 24 well plate, which is then transferred onto a hot plate for film formation.
In a first step, after annealing at different temperatures, a characterization cascade was developed and applied that contains the subsequent elimination of samples that exhibit undesired properties and side products. Fast absorption analysis, photoluminescence (PL) measurements and finally X-ray diffraction (XRD) were performed to identify optimum chemistry and process parameters. Although this is a very reliable procedure, it is still comparatively demanding in terms of the time effort. Therefore a more efficient, purely optical approach by which the experimental parameter space is only explored in terms of rapid emission analysis was developed in a second step. Noteworthy, both strategies led to the same optimum conditions, however, at significantly reduced time effort.
In conclusion, our work shows how by the combination of automation, DoE and efficient characterization, optimum conditions for new materials like perovskites are rapidly identified. This opens the door towards faster material development which is important whenever new perovskite structures, e.g. lead free materials for industrial applications, are strived for.
Literature
- Green, M.A.; Ho-Bailie, A.; Snaith, H.J., âThe emergence of perovskite solar cellsâ, Nature Photonics 2014, 8, (7), 506-514.
- Baikie, T.; Fang, Y.; Kadro, J.M.; Schreyer, M.; Wei, F.; Mhaisalkar, S.G.; Graetzel, M.; White, T.J., âSynthesis and crystal chemistry of the hybrid perovskite (CH 3NH3)PbI3 for solid-state sensitised solar cell applicationsâ, J. Mater. Chem. A 2013,1 , 5628-5641.
- Yan, K.; Long, M.; Zhang, T.; Wei, Z.; Chen, H.; Yang, S.; Xu, J., âHybrid Halide Perovskite Solar Cell Precursors: Colloidal Chemistry and Coordination Engineering behind Device Processing for High Efficiencyâ, J. Am. Chem. Soc. 2015, 137, (13), 4460â4468.