Title | Ga speciation in Ga/H-ZSM-5 by in-situ transmission FTIR spectroscopy |
Publication Type | Journal Article |
Year of Publication | 2021 |
Authors | Yuan, Y, Brady, C, Annamalai, L, Lobo, RF, Xu, B |
Journal | Journal of Catalysis |
Volume | 393 |
Pagination | 60-69 |
Date Published | jan |
ISSN | 10902694 |
Keywords | 6.5, FTIR, Ga hydride, Ga+-H+ pair, Isolated Ga+, Natural Gas Upgrading, Project 6.5, Propane dehydrogenation, Speciation |
Abstract | H-ZSM-5 supported Ga (Ga/H-ZSM-5) has long been recognized as a promising catalyst for nonoxidative dehydrogenation and dehydroaromatization of alkanes. However, Ga speciation under reaction conditions remains controversial. In this work, in-situ transmission Fourier Transform infrared (FTIR) spectroscopy is employed to systematically investigate Ga speciation in Ga/H-ZSM-5 with three Si/Al ratios (15, 28 and 39) and a wide range of Ga/Al ratios (0–1.7). Quantitative FTIR spectroscopy with pyridine reveals that one Ga atom roughly replaces one Brønsted acid site (BAS) at Ga/BAS ratio up to 0.7, however, only up to 80% of the BAS on the H-ZSM-5 can be exchanged even with excess amounts of Ga. At a low Si/Al ratio of 15, the intensity of GaHx bands on reduced Ga/H-ZSM-5 at 550 °C increases almost linearly at low Ga loadings (Ga/Al < 0.13), and then levels off. In contrast, no detectable GaHx bands are observed on Ga/H-ZSM-5 with a high Si/Al ratio of 39, with Ga/Al ratios up to 1.3. The dependence of GaHx bands on both the Si/Al ratios and the Ga/Al ratios shows that Ga speciation varies with BAS density in the zeolite. We hypothesize that paired BAS sites are preferentially exchanged with Ga+, leading to the formation of Ga+-H+ pair sites, while the exchange of isolated BAS form isolated Ga+ species. Using water as a probe molecule, we show that isolated Ga+ and Ga+-H+ pair sites have distinct properties, i.e., the former can be easily oxidized by water at 150 °C to form GaOOH species, while the latter is inactive under the same conditions. These results provide direct experimental evidence for the existence of two types of Ga species on reduced Ga/H-ZSM-5, highlighting the possibility that they have different catalytic activities in alkane dehydrogenation reactions. |
URL | https://www.sciencedirect.com/science/article/abs/pii/S0021951720304498 |
DOI | 10.1016/j.jcat.2020.11.004 |