Understanding the Dynamics of a Methanotroph-Cyanobacterium Coculture through Kinetic Modeling and Experimental Verification
Microbiome Engineering
2019
2nd International Conference on Microbiome Engineering (ICME 19)
Poster Session
Poster Session
From an engineering perspective, coupling methanotrophic metabolism to photosynthesis offers three major advantages for biological biogas conversion. First, exchange of in situ produced O2 and CO2 dramatically reduces mass transfer resistance of the two gas substrates, which can dramatically increases the growth of both strains; Second, in situ O2 consumption removes inhibition on photoautotroph and eliminates risk of explosion; Third, interdependent yet compartmentalized configuration of the coculture offers flexibility and more options for metabolic engineering.
However, development of multi-organism platforms for commercial biogas conversion present significant challenges which center around our ability to control function and composition of species in the coculture. An essential tool for the optimization, design and analysis of the coculture based biogas conversion is the development and validation of kinetics models that can accurately describe and predict the co-culture growth under different conditions. In this work, using Methylomicrobium buryatense - Arthrosipira platensis as the model coculture system, we present the very first effort to quantitatively model the growth dynamics of the coculture. The validated kinetic model can accurate predict the coculture dynamics under different growth conditions.