3D Engineering of Synthetic Tumors
Translational Medicine and Bioengineering Conference
2017
2nd Bioengineering & Translational Medicine Conference
Poster Submissions
Poster session
Saturday, October 28, 2017 - 6:30pm to 7:30pm
Our model is a functional 3D printing system that builds scaffold structures based on a 3D sacrificial molding of carbohydrate glass. This allows the production of a network of channels, fabricated by creating a lattice of filaments, which become perfusable channels once the sugar scaffold is sacrificed. This casting is used to mimic vascular networks for perfusable-engineered 3D tumors and for growing cells encapsulated in a variety of extracellular materials (ECM). To facilitate fluid delivery in this biomimetic 3D environment, we incorporate a microsyringe pump connected to the channel inlet and an outlet channel linked to a waste reservoir to obtain a more accurate representation of the flow rate conditions found in the vasculature. With this modification, we ensure the controlled-delivery of systemic factors to the ECM under conditions that closely resemble physiological scenarios. Cancer cells are printed in an ECM of collagen in the form of co-cultured spheroids (with two or more cell types in varying ratios) as they strikingly mirror the 3D tumor heterogeneity and relevant pathophysiological gradients found in in vivo tumors. The bioprinting of spheroid-containing cells in a sacrificial 3D system allows for the incorporation of cancer stem cells or primary stem cells, the developing of core tumor necrosis, and multicellular arrangements that favor cell-cell contacts in a vascularized context.