Selective laser melting of 304L stainless steel: Role of volumetric energy density on the microstructure, texture and mechanical properties | AIChE

Selective laser melting of 304L stainless steel: Role of volumetric energy density on the microstructure, texture and mechanical properties

TitleSelective laser melting of 304L stainless steel: Role of volumetric energy density on the microstructure, texture and mechanical properties
Publication TypeJournal Article
Year of Publication2020
AuthorsGhayoor, M, Lee, K, He, Y, Chang, Chung, Paul, BK, Pasebani, S
JournalAdditive Manufacturing
Volume32
Pagination101011
Date Published03/2020
ISSN22148604
Keywords304L stainless steel, Additive manufacturing, Microstructure, Module Manufacturing, Project 10.4, Selective laser melting, Texture, Volumetric energy density
Abstract

The role of volumetric energy density on the microstructural evolution, texture and mechanical properties of 304L stainless steel parts additively manufactured via selective laser melting process is investigated. 304L is chosen because it is a potential candidate to be used as a matrix in a metal matrix composite with nanoparticles dispersion for energy and high temperature applications. The highest relative density of 99 %±0.5 was achieved using a volumetric energy density of 1400 J/mm3. Both XRD analysis and Scheil simulation revealed the presence of a small trace of the delta ferrite phase, due to rapid solidification within the austenitic matrix of 304L. A fine cellular substructure ranged between 0.4–1.8 μm, was detected across different energy density values. At the highest energy density value, a strong texture in the direction of [100] was identified. At lower energy density values, multicomponent texture was found due to high nucleation rate and the existing defects. Yield strength, ultimate tensile strength, and microhardness of samples with a relative density of 99 % were measured to be 540 ± 15 MPa, 660 ± 20 MPa and 254 ± 7 HV, respectively and higher than mechanical properties of conventionally manufactured 304L stainless steel. Heat treatment of the laser melted 304L at 1200 °C for 2 h, resulted in the nucleation of recrystallized equiaxed grains followed by a decrease in microhardness value from 233 ± 3 HV to 208 ± 8 HV due to disappearance of cellular substructure.

URLhttps://www.osti.gov/biblio/1647744-selective-laser-melting-stainless-steel-role-volumetric-energy-density-microstructure-texture-mechanical-properties
DOI10.1016/j.addma.2019.101011