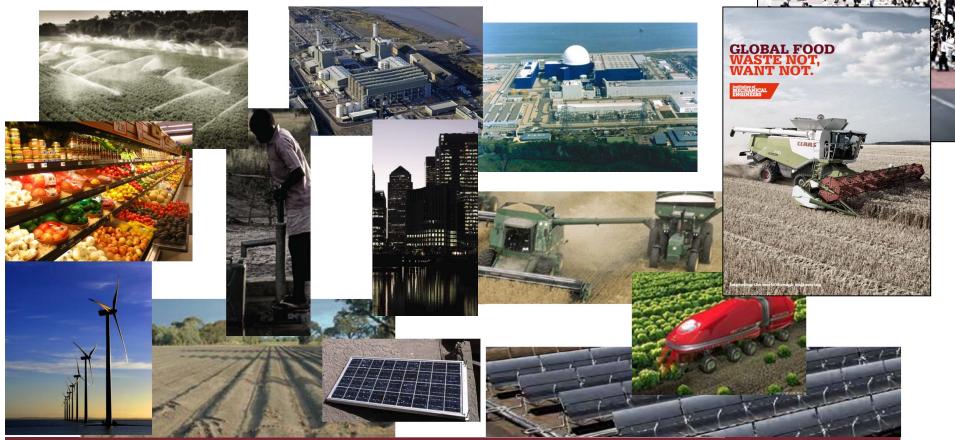
# Low Tech Food Storage Perishable Produce - Cold


## Dr Tim Fox CEng CEnv FIMechE FRSA Head of Energy and Environment Institution of Mechanical Engineers

Improving the world through engineering

# Why engineers? Why IMechE?

Food-Water-Energy-Land relationship

A defining challenge for the 21<sup>st</sup> century



Improving the world through engineering

Institution of **MECHANICAL** 

www.imeche.org

OPILI.ATION

- Population growth and demographic change
  - Asia and sub-Saharan Africa projected to experience biggest growth in absolute numbers
  - Increased urbanisation demanding more and longer rural-urban supply chains
  - Dietary preference changes to food based on perishable produce with increasing affluence
  - Increased demand for convenience foods; largely based on perishable produce

## Global warming

- Tropical and sub-tropical regions already warm; anticipated to experience most severe climate change
- Productivity yields projected to reduce so critical to ensure as much produce as possible reaches market

# India and Tanzania

### Perishable product loss

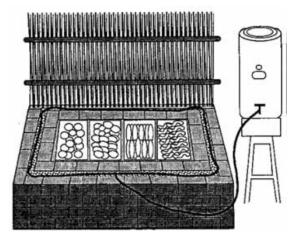
- India & Tanzania loose up to 50% of nutrition-dense perishables between field – market
- 97% Tanzanian meat not refrigerated and 16-25% dairy lost (seasonal)
- Farmers often receive just 30 20% of potential produce value as income
- Consumers pay produce prices that are higher than necessary



# Cold is the need

## Cold is key to tackling perishable loss

- Estimated that around 1/4 of total food wastage in developing countries could be eliminated if these countries adopted same level of refrigeration as in developed economies
- Establishing a continuous temperature controlled environment is what is required – farm to home
- Key to maintaining nutrients, leading to improved heath outcomes



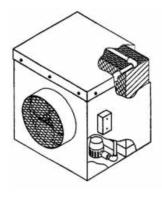

# Cold chain technologies

| Cold chain<br>technology              | Food products                                               | Climate and technological issues                                                                                                                                                                                                                                                                          | Supporting<br>infrastructure<br>needed                                                                                                                                        |
|---------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Step 1                                |                                                             |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                               |
| Use of shade                          | All                                                         | Shade will provide cooling in any<br>climate, but works best at lower<br>relative humidity (RH)                                                                                                                                                                                                           | Shade cloth, sturdy<br>poles or structures<br>that can handle wind                                                                                                            |
| Evaporative<br>natural cooling        | All                                                         | Requires relatively low RH                                                                                                                                                                                                                                                                                | Small building<br>enclosed by porous<br>material (eg<br>earthenware or<br>woven palm fronds)<br>and water                                                                     |
| Evaporative forced<br>air pre-cooling | Tropical and sub-<br>tropical fruit and<br>vegetables       | Requires relatively low RH. Stacking<br>patterns affect rate of cooling                                                                                                                                                                                                                                   | Needs a building<br>and power source to<br>circulate air (electric<br>powered fan)                                                                                            |
| Use of ice                            | Fish, leafy green<br>vegetables (green<br>onions, broccoli) | A roughly equal solution of water and ice is<br>pumped through holed boxes to ice wax and<br>cool produce. Requires waterproof packages<br>and can be used only for water tolerant<br>food products                                                                                                       | Source of clean ice<br>(can be inefficient<br>and expensive),<br>power for pumps                                                                                              |
| Hydro-cooling                         | Leafy vegetables,<br>some temperate<br>fruits               | Well water is sometimes naturally cool<br>enough to provide a source of cold – up to<br>five times quicker than mechanical (vapour<br>compression) refrigeration, but more<br>energy-intensive and has the potential to<br>contaminate food product. Can be used only<br>for water-tolerant food products | Source of clean water<br>(deep well or stream)<br>with appropriate<br>hygiene controls.<br>Ice or refrigeration<br>to cool water down<br>to 0-2°C. Power for<br>pumps and ice |
| Forced air<br>pre-cooling             | Most horticultural<br>crops                                 | Cooling is sped up via fans. Stacking patterns<br>and package venting patterns effect rate of<br>cooling. Delicate produce may experience<br>dehydration if fan speeds are too high                                                                                                                       | Needs power source<br>to circulate air<br>(electric powered fan)<br>and a cold room                                                                                           |
| Individually<br>Quick Frozen (IQF)    | Fruits, vegetables in<br>small pieces                       | Need to match product with freezing<br>rate, temperature, use appropriate pre-<br>treatments. Need appropriate packaging<br>(can be expensive). Can utilize a direct liquid<br>nitrogen spray as source of freezing                                                                                       | Source of reliable<br>power. Requires<br>expensive conveyor<br>style freezing<br>equipment                                                                                    |
| Blast freezing                        | All                                                         | Forced air racked pallet systems can reduce<br>energy costs                                                                                                                                                                                                                                               | Source of reliable<br>power                                                                                                                                                   |

| Cold chain<br>technology                                                           | Food products                                            | Climate and technological issues                                                                                                                                                                                                                                                                                                           | Supporting<br>infrastructure<br>needed                                                                      |
|------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Step 2                                                                             |                                                          |                                                                                                                                                                                                                                                                                                                                            |                                                                                                             |
| High altitude cold<br>storage                                                      | All                                                      | Typically air temperatures decrease by<br>10°C for every one km increase in altitude                                                                                                                                                                                                                                                       | Roads from farms to storage sites                                                                           |
| Night air ventilated<br>storage                                                    | All                                                      | Effectively maintains product temperature<br>when the outside air temperature is below<br>the desired product temperature for 5–7<br>hours per night                                                                                                                                                                                       | Insulated storage<br>structure                                                                              |
| Underground<br>cold storage                                                        | All                                                      | The average temperature will be similar<br>to average surface water temperatures<br>in local rivers or streams, or the average<br>annual air temperature in the region                                                                                                                                                                     | Cave or root cellar                                                                                         |
| Evaporatively cooled<br>cold storage                                               | Most horticultural,<br>some dairy and<br>fermented foods | Requires relatively low RH (best in dry<br>regions where dew point temperature is low)                                                                                                                                                                                                                                                     | Needs water source<br>(such as deep well),<br>good air flow and<br>power for fans and<br>pumps              |
| Small-scale<br>refrigerated cold<br>storage – commercial<br>system (walk-in room)  | A11                                                      | Stacking patterns affect cooling<br>effectiveness and costs                                                                                                                                                                                                                                                                                | Source of reliable<br>power                                                                                 |
| Small-scale<br>refrigerated cold<br>storage – CoolBot™<br>system (walk-in<br>room) | All                                                      | CoolBot <sup>M</sup> automated controller can be<br>used with a traditional window-style air<br>conditioning unit, reduced capital cost for<br>cold room by 90% compared to a commercial<br>refrigeration system. Stacking patterns<br>affect cooling effectiveness and costs                                                              | Source of reliable<br>power                                                                                 |
| Large-scale<br>refrigerated cold<br>storage warehouse                              | All                                                      | Stacking patterns affect cooling<br>effectiveness and costs                                                                                                                                                                                                                                                                                | Source of reliable<br>power, back-up<br>generators                                                          |
| Step 3                                                                             |                                                          |                                                                                                                                                                                                                                                                                                                                            |                                                                                                             |
| Ouilts and<br>insulated blankets                                                   | All                                                      | Requires pre-cooling before packed<br>products are covered                                                                                                                                                                                                                                                                                 | Source of power for<br>pre-cooling. Return<br>system in order to<br>reuse expensive<br>insulated containers |
| Refrigerated truck<br>or trailer ('reefer')                                        | All                                                      | Stacking patterns affect cooling<br>effectiveness and costs. Traditional trucks<br>and reefers do not have the refrigeration<br>capacity to provide cooling (they can only<br>maintain cold temperatures); liquid nitrogen<br>evaporation systems have been developed<br>to provide direct cooling of the insulated<br>trailer compartment | Source of reefers for<br>purchase or lease.<br>Power to drive<br>refrigeration units                        |
| Refrigerated marine<br>container                                                   | All                                                      | Stacking patterns and package venting<br>affect cooling effectiveness and costs.<br>Typically powered via "plug-in" to<br>electricity while at port and on ships                                                                                                                                                                           | Source of marine<br>containers for lease.<br>Power to drive<br>refrigeration units                          |
| Refrigerated rail cars                                                             | All                                                      | Stacking patterns affect cooling<br>effectiveness and costs. Early designs<br>used large ice banks as a source of cold                                                                                                                                                                                                                     | Availability of<br>refrigerated rail cars<br>scheduling, routes.<br>Power to drive<br>refrigeration units   |

- Passive/manual solutions
  - Painting storage buildings white or silver
  - Reflective insulation on outside of building
  - Massive walls of high thermal capacity
  - Roof overhang to provide shade
  - Radiant cooling
  - Underground storage or storage in caves
  - High altitude storage
  - Night air ventilation
  - "Zero-energy" cool chamber




### Powered solutions

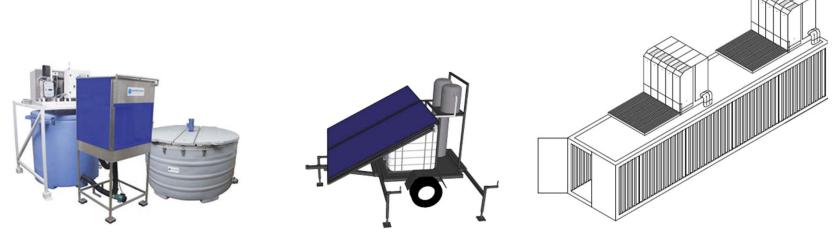
Institution of **MECHANICAL** 

- Evaporatively cooled storage room
  - need electricity for pumps & blower, cold water source and pad material; prefers low RH environment

Low-tech cold storage - 2

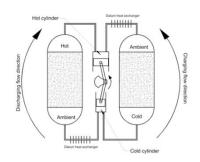
- Mechanically refrigerated walk-in cold rooms
  - Small-scale, simple self-build, e.g. CoolBot
  - Re-used van and shipping containers
  - Small-scale, commercial build
  - Large-scale, commercial build, warehouse
  - need electricity for compressors, fans etc

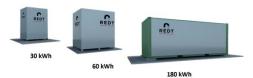





# Energy security

### • The primary challenge


- Many cold chain technologies require reliable, continuous and affordable source of electricity (precooling/chilling/freezing & storage) or diesel (transport)
- 400 million people in India are not connected to grid and 350 million of those are located in rural villages
- Less than 14% of Tanzanians have access to electricity and in rural areas the figure reduces to 2%
- Farmers resort to diesel generator sets; energy security issue – often expensive and in short supply
- Energy security will become more challenging as global competition increases and diesel subsidies withdrawn


- Direct use of solar thermal energy
  - Refrigeration based on absorption process driven by solar thermal (e.g. SunChill, Solar-Polar)
- Small scale power use
  - Solar (e.g. SunDanzer, Promethean)
  - Biogas (e.g. UGARF)



# Reliable power: energy storage

- Needs to be suitable for local context
  - Pumped Heat Electrical Storage
    - 2 containers of local mineral & reversible gas machine; engine & heat pump
    - Low-cost, modular, closed, 2-5MW units
  - Flow Batteries
    - Extension of conventional battery thinking
    - Decadal lifetimes, little maintenance, no safety issues, scalable 5kW to 250+kW
  - Cryogenic energy storage
    - Liquid air of nitrogen formed by chilling air, stored, expands to drive turbine when exposed to ambient temperature









- Enables scaleable holistic systems level approach
  - Not only reliable electricity, but also direct cooling
  - Avoids traditional refrigerants and uses benign feedstock (air) and working fluid (liquid air)
  - Established mechanical engineering with embedded global supply chain in place
  - Enables provision of 'fuel' for transport refrigeration units
  - Case studies explore 'Getting Started' on the ground in India and Tanzania



# Challenges for engineers?

- Focus on delivering appropriate cold storage technology for use at scale in off-grid and micro-grid applications
- Offer alternative technologies that deliver 'power and cooling' for both rural and urban areas – systems level view
- Tackle issues of equipment and plant scaling to enable a range of facilities to be delivered
- Ensure solutions are affordable, safe, reliable, easy to build, operate and maintain and suitable to local technical skills
- Recognise finance, politics, regulation, ethics, access and ownership are often key barriers to meeting the challenges

### Institution of MECHANICAL Thank you



### Twitter: @TimFox\_IMechE

Improving the world through engineering

www.imeche.org