

Sustainability in the Context of Process Engineering

Debalina Sengupta, PhD

Associate Director, TEES Gas and Fuels Research Center Lecturer, Artie McFerrin Department of Chemical Engineering

Environmental Engineering Symposium, AIChE Dallas Section October 27th, 2017

Associate Director at the TEES Gas and Fuels Research Center And Lecturer at Artie McFerrin Department of Chemical Engineering, TAMU

Past Positions:

Post Doctoral Research Associate at the Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX (May 2014 ⁻ December 2015) ORISE Post Doctoral Fellow at the National Risk Management Research Laboratory, **US Environmental Protection Agency, Cincinnati, OH** (November 2010 ⁻ April 2014) **Doctorate (Chemical Engineering) :** Louisiana State University (2005-2010) **Bachelor (Chemical Engineering) :** Jadavpur University, India (1999-2003)

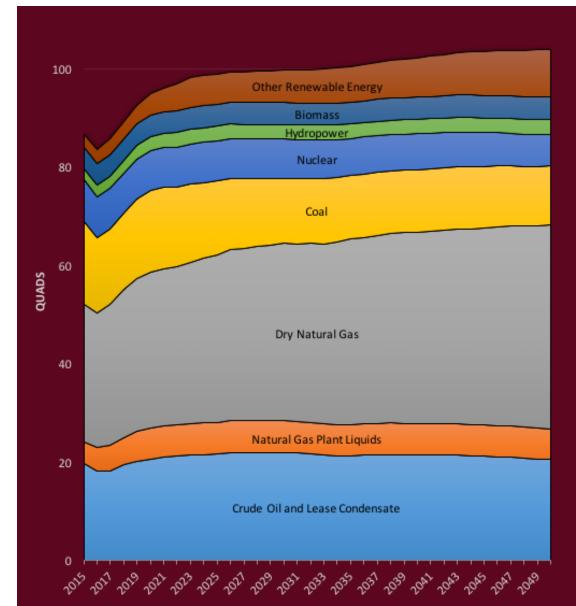
American Institute of Chemical Engineers

2nd Vice Chair, Environmental Division, AIChE 2017 Programming Chair, Environmental Division, AIChE 2015-2017 Director, Environmental Division, AIChE 2011-2014 Director, Fuels and Petrochemical Division, AIChE 2016-2019

The GFRC is a Texas A&M Engineering Experiment Station (TEES) center that has been created to provide **research**, **educational**, **and outreach services** in the area of **gas and fuels**.

These activities and services support the substantial growth of shale and natural gas exploration, production, processing, and monetization, especially in the United States and in Qatar.

There is a **critical need** to support this growing industry and to offer novel approaches to its **sustainable development**. The GFRC aims to serve as a global leader in this area.



Total Energy Production, EIA, AEO 2017

Natural Gas, Coal and Crude are going to continue as primary energy sources.

Natural Gas is the "new" resource that the United States has, but not enough use other than LNG and electricity.

Natural gas liquids responsible for new boom in industrial development in the Gulf Coast.

"Sustainable development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs." – Brundtland Report, United Nations World Commission on Environment and Development (WCED), 1987

There are numerous approaches to apply sustainable development by world organizations, countries and industries.

Taking on the world's toughest energy challenges."

Systems View of Sustainability

Economy (economic capital) economic value is created for society

Society (human capital)

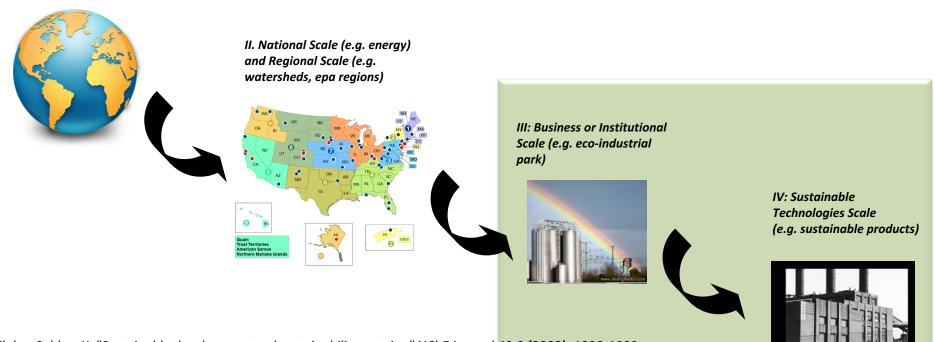
ecological goods and services are utilized in industry some waste is recovered and recycled emissions may harm humans

ecological goods and services are utilized in society

waste and emissions may degrade the environment

Environment (natural capital)

Scale of Systems


Type I: Global Systems (e.g. global CO₂ budgeting)

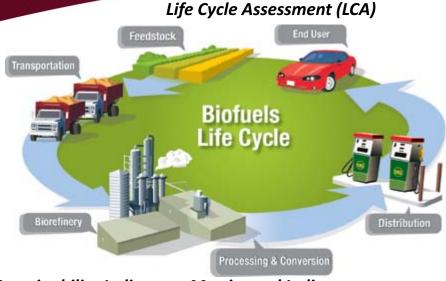
Type II: Systems bounded by geographical boundaries, such as National Systems (energy system, material flow) and Regional Systems (e.g. watersheds, Brownfields)

Type III: Business Systems (e.g. business networks, waste exchange networks)

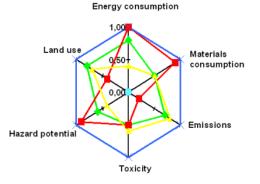
Type IV: Sustainable technologies (e.g. green materials, sustainable products)

I: Global Scale (e.g. global CO₂ budgeting)

Sikdar, Subhas K. "Sustainable development and sustainability metrics." AIChE journal 49.8 (2003): 1928-1932.



- How does the vision for the world organizations translate into what we do as process engineers?
- How do we link the information needs at the global scales to what is in our control?
- What methods exist in the academic community, and how does it differ from business perspectives?



- Sustainability is about **systems**
- Sustainability is always **relative**, never absolute
- Sustainability functions (economic, environmental, and societal) of systems are described by a parsimonious set of indicators
- Scale of the system determines the nature of the set of indicators and the sustainability analysis
- Indicators are not pure (in Brundtland sense); they are often two or three dimensional

Eco-Efficiency Analysis

Industrial Ecology, Eco-Industrial Parks

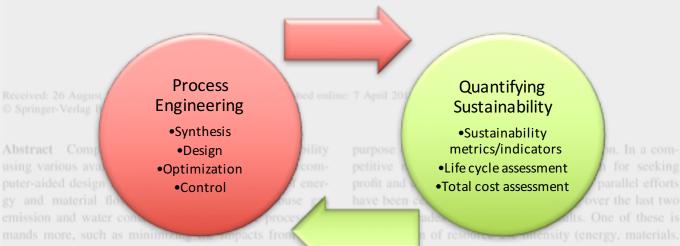
Sustainability Indicators: Metrics and Indices

Footprints (ecological, water, nitrogen, phosphorus etc.)

Carbon Dioxide Sequestration (geological sequestration, bio-sequestration, chemical sequestration)

Total Cost Assessment Methodology (TCA) (Economic Costs, Environmental Costs, Societal Costs)

Sustainable Supply Chains

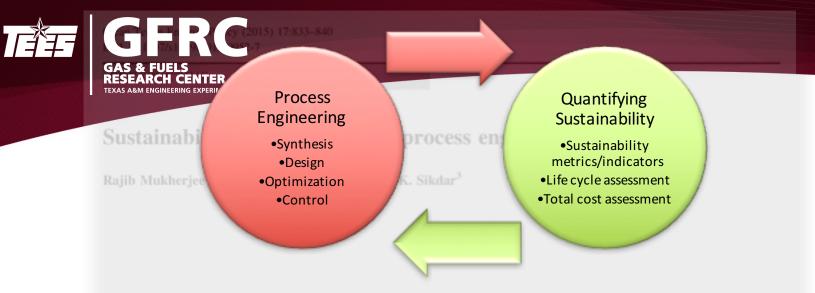


Sustainability in the context of process engineering

Rajib Mukherjee¹ · Debalina Sengupta² · Subhas K. Sikdar³

NEERING EXPERIMENT STATION

GAS & FUELS



harmful emissions, discharges, waste creation, economic and societal impacts. We have proposed an overall sustainability footprint, which in theory represents impacts of a process on all three domains of sustainability. This perspective article provides a critical analysis of attaining sustainability by minimizing this sustainability footprint using impact data as indicators. We also propose the use of the integration of the sustainability footprint in the computer-aided process design itself, rather than checking the impacts after the data have been collected on actual process options designed ahead of the analyses. that was spearheaded by heat integration and waste reduction. Later, the concept of resource use minimization was extended to mass exchange networking, and to various process and cost optimization techniques. The other effort came from the concerns for the environment and was focused on quantifying process wastes into environmental impacts, particularly of toxic materials generated, emitted, or released from processes. With lifecycle assessment (LCA) techniques taking hold among process designers, process engineering started to combine the knowledge generated by researchers who were focused on devising measures for exposures of toxic compounds to

Mukherjee, R., Sengupta, D., & Sikdar, S. K. (2015). Sustainability in the context of process engineering. Clean Technologies and

Environmental Policy, 17(4), 833-840.

merged into an integrated design for safer processes that

Received: 26 August 2014/ Accepted: 27 March 2015 © Springer-Verlag Berlin Heidelberg (Outside the US/

Abstract Computational process design for su

puter-aided design featuring process optimization of energy and material flow plus minimizing greenhouse gas emission and water conservation. Sustainable process demands more, such as minimizing the impacts from other harmful emissions, discharges, waste creation, economic, and societal impacts. We have proposed an overall sutainability footprint, which in theory represents impacts of a process on all three domains of sustainability. This percreative article provides a critical analysis of attaining

sustainability by minimizing this sustainability using impact data as indicators. We also propose the integration of the sustainability footprint in puter-aided process design itself, rather than ch impacts after the data have been collected on act options designed ahead of the analyses.

Retrospective Analysis

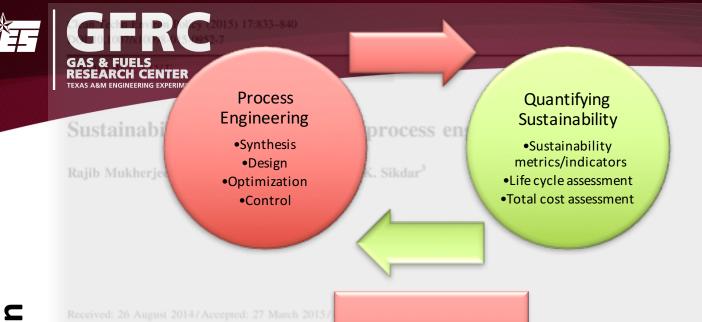
Process

use and cost minimization. In a com-, this objective is both for seeking ental stewardship. Two parallel efforts cess engineering over the last two

Sustainability Assessment Methods

ater) that was stored by heat integration and tection. Later, the concept of resource use tion was extended to mass exchange networking, various process and cost optimization techniques. The other effort came from the concerns for the environ-

Sustainable Process


ed on quantifying process wastes into acts, particularly of toxic materials or released from processes. With life-JCA) techniques taking hold among rocess engineering started to combine rated by researchers who were focused

Mukherjee, R., Sengupta, D., & Sikdar, S. K. (2015). Sustainability in the context of process engineering. Clean Technologies and

Environmental Policy, 17(4), 833-840.

nerged into an integrated design for safer processes that

Motivation

Motivation

Process

Prospective Analysis

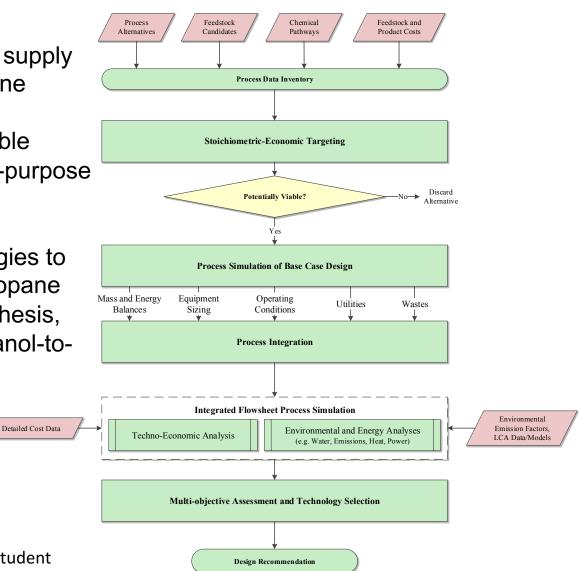
The other effort came from the concerns for the environ-

Sustainable Process

on devising measures for exposures of toxic compounds to

Mukherjee, R., Sengupta, D., & Sikdar, S. K. (2015). Sustainability in the context of process engineering. Clean Technologies and

Environmental Policy, 17(4), 833-840.



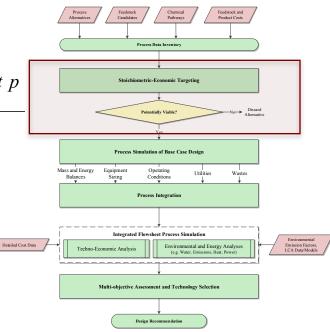
Overview of Projects

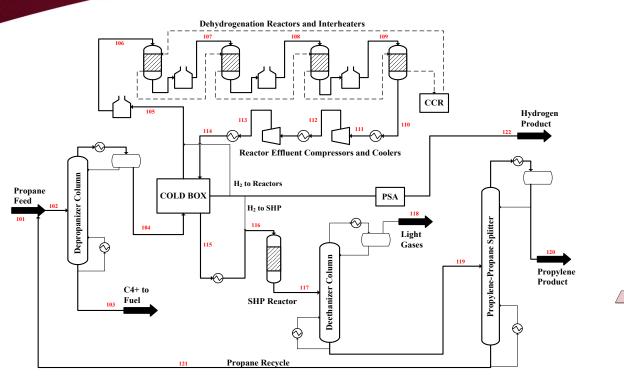
- Process Integration
 - Single Process PDH Process
 - Multiple Processes Eco-Industrial Park
- Life Cycle Assessment Inventory Analysis
 - Sustainable Supply Chain Design of Biofuels
 - Sustainable Supply Chain Design of Consumer Products
 - Sustainability Metrics
 - Development of the Sustainability Footprint method

REMEMBER! SCALE OF PROCESS IMPORTANT FOR SUSTAINABILITY ANALYSIS!

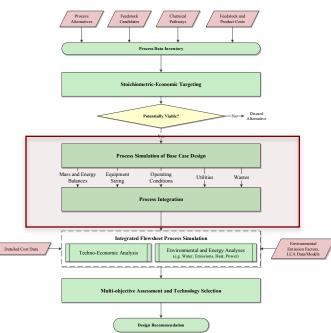
- Increasing spread between the supply and demand curves for propylene
- Aim is to investigate a sustainable process design approach to on-purpose propylene production
- Following established technologies to directly produce propylene : Propane Dehydrogenation (PDH), Metathesis, Methanol-to-Olefins and Methanol-to-Propylene (MTO/MTP)

Acknowledgement: Mr. Ashwin Agarwal, MS Student

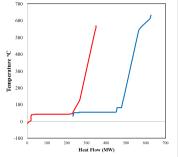

Manuscript in review at ACS Green Chemistry and Engineering Journal

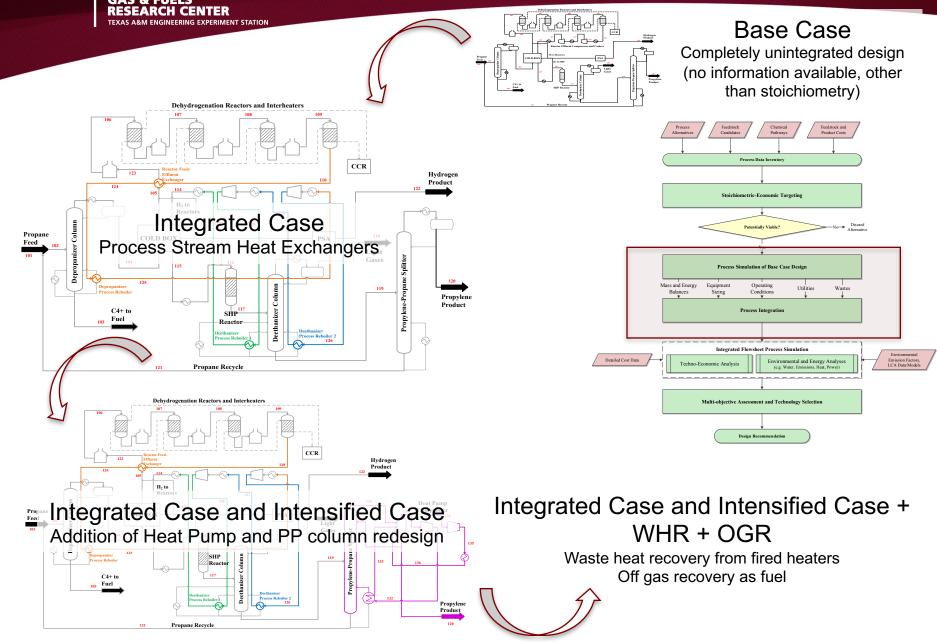

 $MISR = \frac{\sum_{p=1}^{N_{products}} Annual \ production \ rate of \ product \ p \times Purchase \ price of \ product \ p}{N_{products}}$

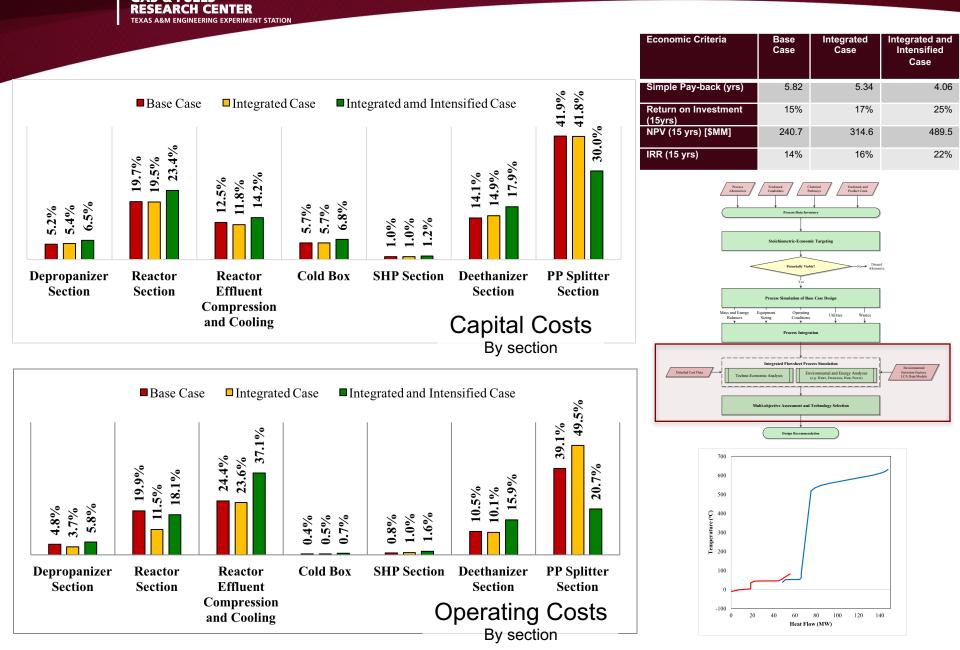
FERING EXPERIMENT STATIO


 $\sum_{r=1}^{n} Annual feed rate of reactant r \times Purchase price of reactant r$

On-Purpose Propylene Process	MISR
Propane Dehydrogenation	2.07
Olefin Metathesis	0.95
Methanol to Olefins	0.98






TEXAS A&M ENGINEERING EXPERIMENT STATION

Utility Type	Unit Cost	Duty (MW)	Cost (MM\$/yr)	% of Total Utility	Major Consumer in Process	700 600 500
Cooling Water	\$0.023/m ³	358	8.4	10.7%	PP Splitter Condenser and Reactor Effluent Coolers (83%)	ပ္ 400 ဦ
LP Steam	\$10.7/kg	237.4	35.5	45%	PP Splitter Reboiler (80%)	300 acti
Natural Gas	\$10.1/MW-hr	159.3	15.7	19.9%	Fired Heaters (100%)	E 200
Electricity	\$0.065/KW-hr	35.6	19.2	24.4%	Reactor Effluent Compressors (95%)	100
Total Utility		790.3	78.8	100%		0

NG EXPERIMENT STATION

Pollutant	Emission Factor (lb/10^6scf)	Emission Factor Rating
CO ₂	120,000	A
N ₂ O (Low NOx Burner)	0.64	E
SO ₂	0.6	A
ТОС	11	В
Methane	2.3	В
VOC	5.5	С

Process Standards	Revent Ablemetrics Controlled In Parlows Product and Product Cons
Process Standard of Race Case Design Process Standard of Race Design Process Standard of Race Design Process Standard of Race Design Process Standard of Race Design Process Standa	Process Data Inventory
Process Standard of Base Case Design Process Standard of Base Case De	
Process Statistics Process Statistics Process Statistics Process Statistics Process Statistics Process Integrated Plowsheet Process Statistics (CA Data Madia Matrix abjective Assessment and Energy Analyses (CA Data Madia Matrix abjective Assessment and Technology Sciences	Stoichiometric-Economic Targeting
Process Standard of Race Case Design Process Standard of Race Case Design Mass and Energy Feginport Conditions Process Instructions Process Instruction Process Instruction	Disard
Process Simulation of Rate Case Design Mass and Energy Equipment Process Integration Frocess Integration Desited Case Data Frocess Integration Desited Case Data Frocess Integration Desited Case Data Frocess Integration Technology Steelion Matic objective Assessment and Energy Audyses (c) Wate, Ensuine, Inte, News) Matic objective Assessment and Technology Steelion	Potentially Viable? North Alternative
Mater and Energy Equipment Operating Utilities Waters Relieves Sumption Operating Process Integration Integrated Process Simulation Multi-objective Assessment and Technology Selection Multi-objective Assessment and Technology Selection	
Balances Siring Confirms UBIRS WallS Preces Integration Integrated Flow Meet Process Simulation Techno-Economic Analysis Multi-objective Assessment and Technology Selection Multi-objective Assessment and Technology Selection	Process Simulation of Base Case Design
Integrated Prowsket Process Simulation Daniel Con Das Techno-Economic Antilysis Multi-objective Assessment and Technology Scherion Multi-objective Assessment and Technology Scherion	Balances Sizing Conditions Unittee Wastes
Denied Con Date Techno-Economic Analysis Techno-Economic Analysis Malti-objective Assessment and Technology Selection Malti-objective Assessment and Technology Selection	Process Integration
Denied Con Date Techno-Economic Analysis Techno-Economic Analysis Malti-objective Assessment and Technology Selection Malti-objective Assessment and Technology Selection	
Daniel Con Das	Integrated Flowsheet Process Simulation
	Detailed Cost Data
	Multi-objective Assessment and Technology Selection

Electricity Source	CO ₂ (Ib/MWhr)	Methane (Ib/GWhr)	N₂O (Ib/GWhr)
ERCOT (Texas) Grid	1142.8	81.8	11.6
US Avg.	1122.9	110.9	16.0
SRMW (SERC Midwest)	1772.0	208.8	30.4

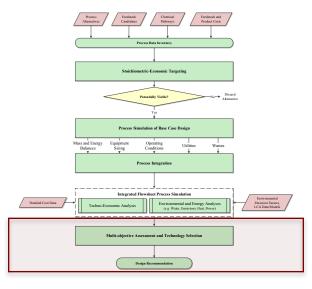
	Base Case			Integrated Case			Integrated + Intensified Case		
Pollutant	Base Case	Base Case + WHR	Base Case + WHR + OGR	Integrated Case	Integrated Case with WHR	Integrated case +WHR + OGR	Integrated + Intensified Case	Integrated + Intensified Case with WHR	Integrated + Intensified case with WHR+ OGR
		tons/yr		tons/yr			tons/yr		
CO ₂	1,013,054	911,646	748,282	820,723	776,074	612,710	531,606	480,676	317,312
Methane	21.94	20.00	20.00	18.25	17.40	17.40	15.99	15.01	15.01
SO ₂	3.57	3.07	3.07	2.61	2.39	2.39	0.85	0.60	0.60
ТОС	65.50	56.20	56.20	47.87	43.77	43.77	15.63	10.96	10.96
VOC	32.75	28.10	28.10	23.93	21.89	21.89	7.81	5.48	5.48
N ₂ O	4.98	4.44	4.44	3.95	3.72	3.72	2.71	2.44	2.44
Total Emissions	1,013,182	911,758	748,394	820,819	776,164	612,800	531,649	480,711	317,347
Cost of CO ₂ Emissions @\$25/ton \$MM/yr	25.33	22.79	18.71	20.52	19.40	15.32	13.29	12.02	7.93
OGR – Off Gas Recovery									

WHR – Waste Heat Recovery

Sustainability Analysis

Sustainability Weighted Return on Investment (SWROI) metric which is an extension of the Return on Investment concept with the augmented sustainability metrics and process integration targeting approaches.

Considering a set a process alternatives: $p = 1, 2, 3, N_{projects}$. For the pth project,


a new term called the Annual Sustainability Profit (ASP) is given by:

$$ASP_{P} = AEP_{P} \left[1 + \sum_{i=1}^{N_{indicators}} w_{i} \left(\frac{Indicator_{p,i}}{Indicator_{i}^{Target}} \right) \right]$$

AEP_p is the Annual Economic Profit

 w_i : ratio representing the relative importance of the *i*th sustainability indicator compared to the annual net economic profit Indicator_{p,i} : represents the value of the *i*th sustainability indicator associated with the *p*^{th project} Indicator_i^{Target}: target of the *i*th sustainability indicator (benchmarking or taken as the largest value from all project)

$$SWROI_{P} = \frac{ASP_{P}}{TCI_{P}}$$

Mahmoud M. El-Halwagi, Chapter 3 - Benchmarking Process Performance Through Overall Mass Targeting. In Sustainable Design Through Process Integration (Second Edition), Butterworth-Heinemann: 2017; pp 73-125.

Sustainability Analysis

$$ASP_{P} = AEP_{P} \left[1 + \sum_{i=1}^{N_{indicators}} w_{i} \left(\frac{Indicator_{p,i}}{Indicator_{i}^{Target}} \right) \right] SWROI_{P} = \frac{ASP_{P}}{TCI_{P}}$$

AEP_p is the Annual Economic Profit

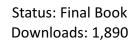
 w_i : weight factor ratio representing the relative importance of the *i*th sustainability indicator compared to the annual net economic profit Indicator_{p,i}: represents the value of the *i*th sustainability indicator associated with the $p^{th project}$

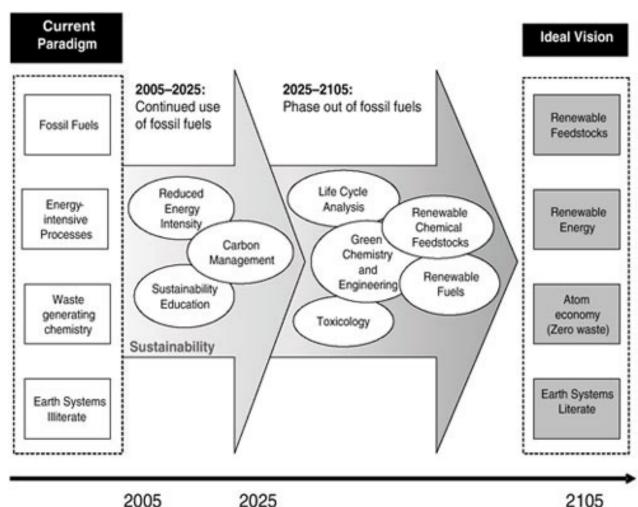
Indicator, Target: target of the ith sustainability indicator (benchmarking or taken as the largest value from all project)

Description	10 yr. Avg. Taxable Income	Total Capital Investment	Water Reduction (Steam + CW)	Electrical Energy Savings (Power)	Fuel Savings (NG Firing in Fired Heaters)	CO ₂ emission Reductions	VOC Reduction	ROI (10 yrs)	SWROI
	MM\$/yr	MM\$	10 ⁶ kg/hr	MW	MW	10 ³ tons/yr	tons/yr		
Weight Factors			0.1	0.1	0.07	0.25	0.05		
Targets			45.08	36	159	1013	32.7		
Base Case + WHR	67	643	0	0	0	101.4	4.6	10.38%	10.71%
Base Case + WHR + OGR	67	643	0	0	0	264.8	4.6	10.38%	11.13%
Integrated Case	79	645	25.6	0	87	192.3	8.8	12.29%	14.21%
Integrated Case + WHR	79	645	25.6	0	87	237	10.9	12.29%	14.38%
Integrated Case + WHR + OGR	79	645	25.6	0	87	400.3	10.9	12.29%	14.88%
Integrated + Intensified Case	104	536	38.7	-14.5	87	481.4	24.9	19.45%	24.12%
Integrated + Intensified Case + WHR	104	536	38.7	-14.5	87	532.4	27.3	19.45%	24.43%
Integrated + Intensified Case + WHR + OGR	104	536	38.7	-14.5	87	695.7	27.3	19.45%	25.21%

Recap:

- Calculate your common economic metrics for your projects.
- Calculate your environmental (and possible social metrics) metrics.
- Use the ASP (Annual Sustainability Profit) and SWROI (Sustainability Weighted ROI) to make a decision about a project.
- If your ROI is reasonable, but you can show a much higher SWROI, project justification can be made.
- SWROI provides a reflection of how sustainable your project is from different competing choices.

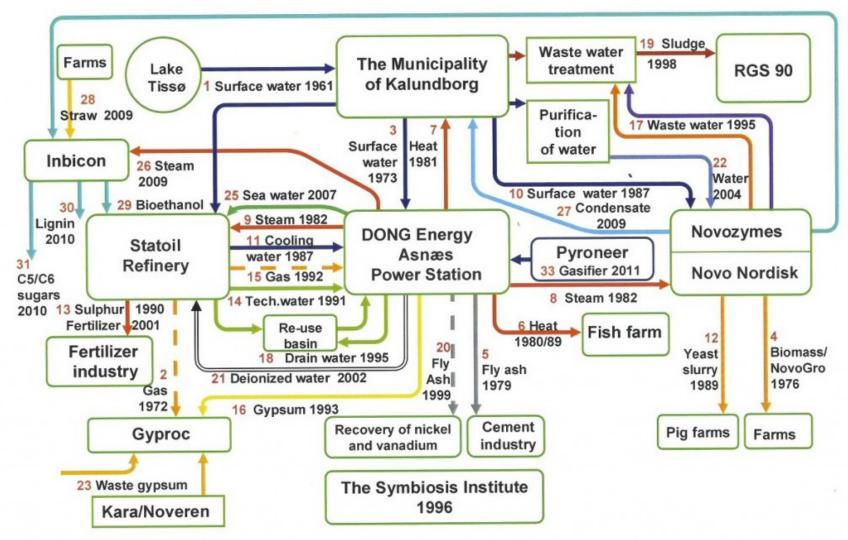

Eco-Industrial Park



SUSTAINABILITY IN THE CHEMICAL INDUSTRY

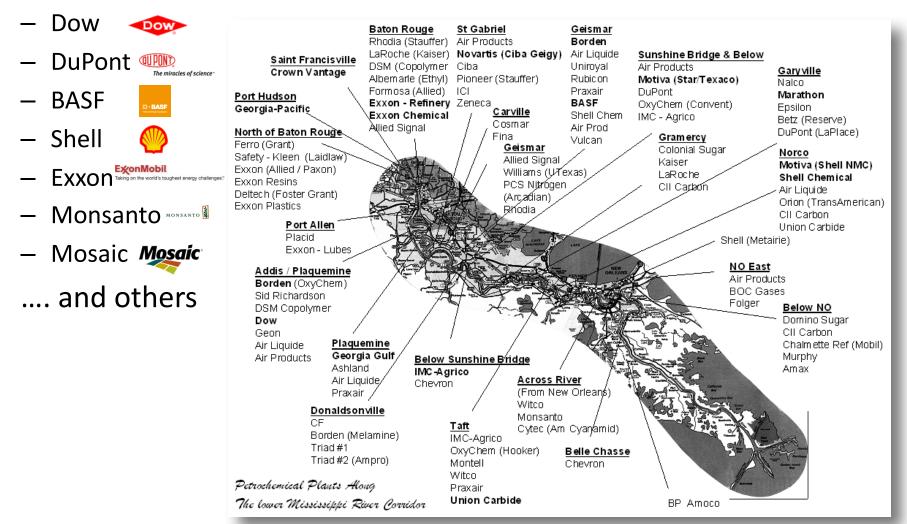
Grand Challenges and Research Needs

NATIONAL RESEARCH COUNCIL OF THE NATIONAL ACADEMIES


Year

National Research Council. Sustainability in the Chemical Industry: Grand Challenges and Research Needs - A Workshop Report. Washington, DC: The National Academies Press, **2005**. doi:10.17226/11437

Eco-Industrial Park


Kalundborg, Denmark

GFRC GAS & FUELS RESEARCH CENTER TEXAS ARM ENGINEERING EXPERIMENT STATION

Petrochemical complex in the lower Mississippi River Corridor

<u>Garville</u> Natco Marathon Epsilon Betz (Reservi

Baton Rouge St Gabriel Geisma Shorta (Sharfler) / Ar Bandarty Barden

Saint Francis

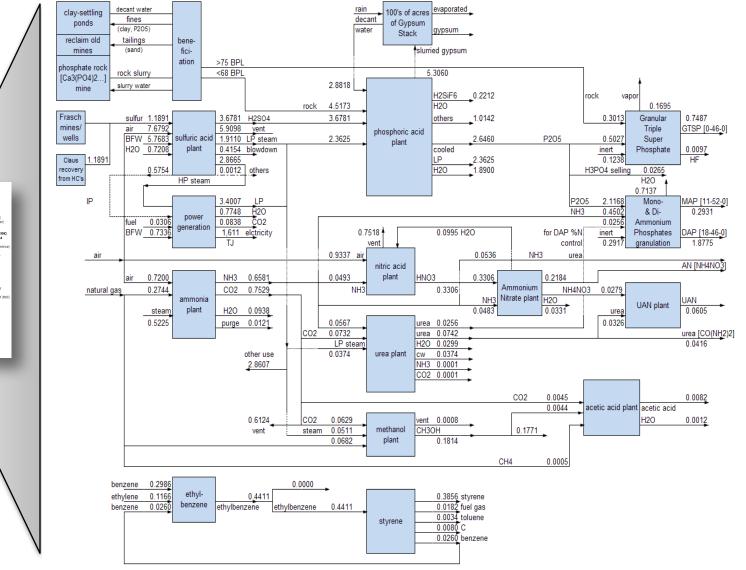
Pert Hudson Georgia-Pacifiç

North of Baton Rouge. Perro (Grant) Safety - Kleen (Laidlav)

> Port Allen Placid Extan - Lu

Adds / Plaquenine Borden (Do)Chem) Sid Richardson DSM Copolymer Dow Geon Ar Lipsde Plac Ar Dankuts Geo

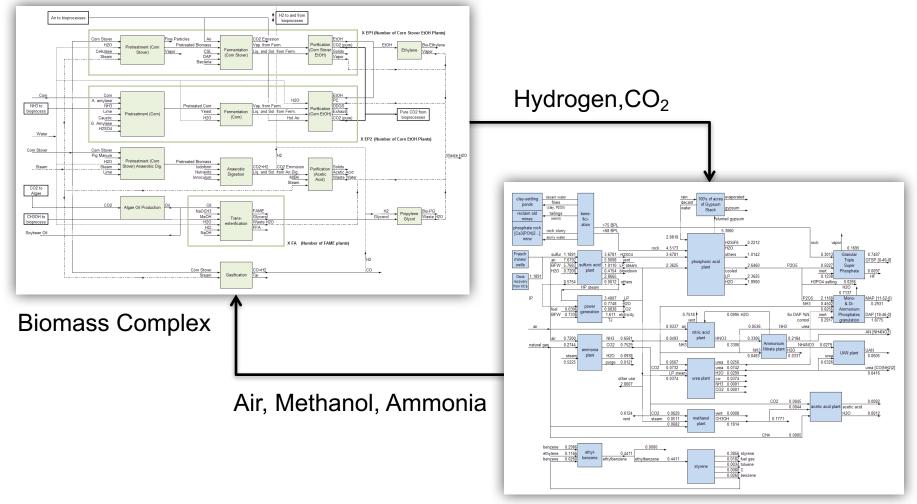
Patrichimical Plants Anno


The lower Mississistic River Armide

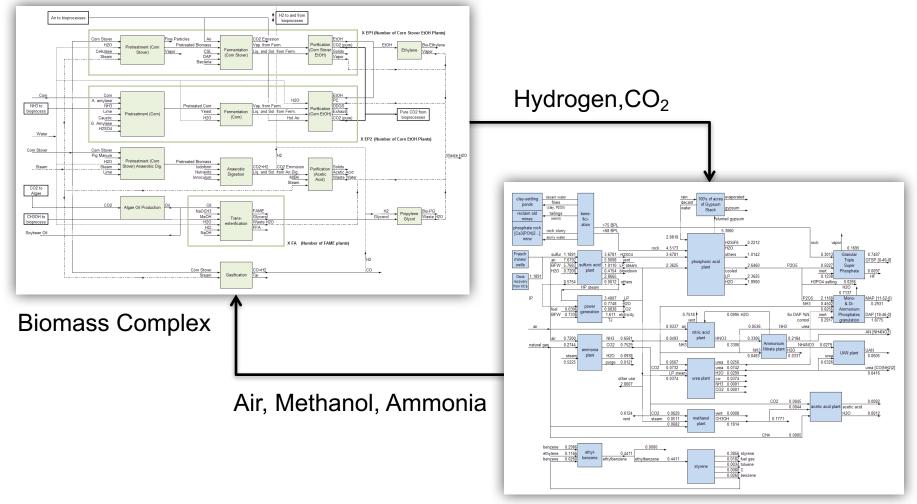
Air Liquid Praxair _/

Union Carbide

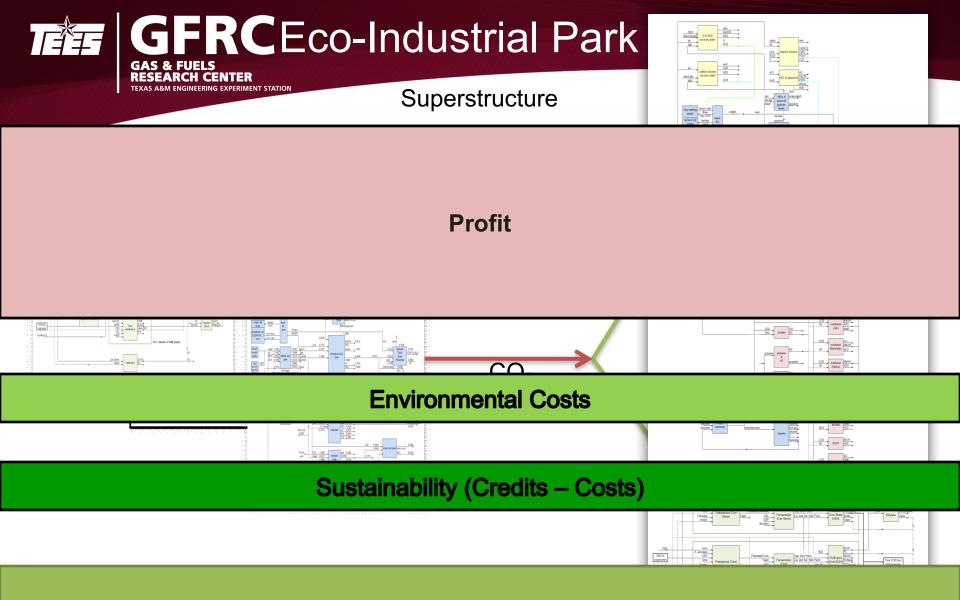
Eco-Industrial Park


Base Case of Plants in the Lower Mississippi River Corridor

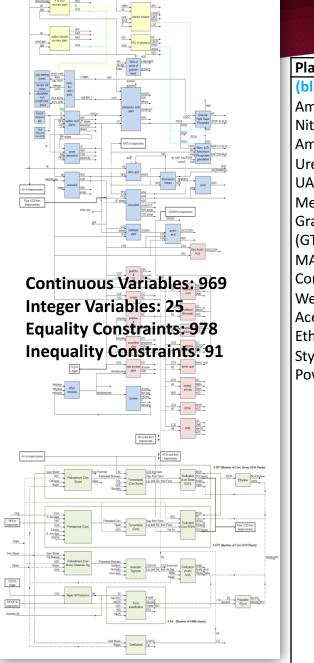
Integrated Chemical Production Complex



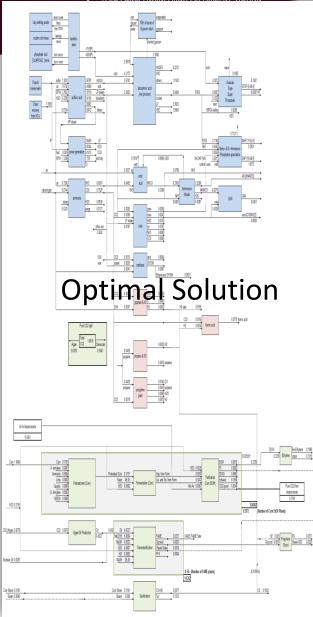
Base Case Complex



Integrated Chemical Production Complex


Base Case Complex

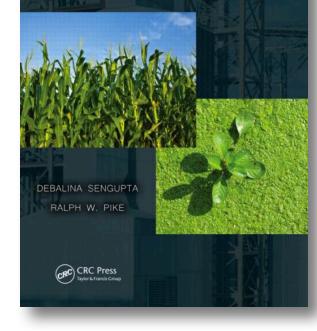
Triple Bottom Line = Σ **Profit -** Σ **Environmental Costs +** Σ **Sustainable (Credits – Costs)**



lants in Base Case	Plants Added to Form the Superstructure
plue)	Bioprocesses and CO ₂ consumption by Algae (green)
mmonia	Fermentation ethanol (corn stover)
itric acid	Fermentation ethanol (corn)
mmonium nitrate	Anaerobic Digestion to acetic acid (corn stover)
rea	Algae Oil Production
AN	Transesterification to FAME and glycerol (soybean oil and
1ethanol	algae)
ranular triple super phosphate	Gasification to syngas (corn stover)
GTSP)	Ethylene from dehydration of ethanol
1AP and DAP	Propylene glycol from glycerol
ontact process for sulfuric acid	CO ₂ consumption for Chemicals (red)
let process for phosphoric acid	Methanol – Bonivardi, et al., 1998
cetic acid – conventional method	Methanol – Jun, et al., 1998
thyl benzene	Methanol – Ushikoshi, et al., 1998
tyrene	Methanol – Nerlov and Chorkendorff, 1999
ower generation	Ethanol
	Dimethyl ether
	Formic acid
	Acetic acid - new method
	Styrene - new method
	Methylamines
	Graphite
	Hydrogen/Synthesis gas
	Propylene from CO ₂
	Propylene from propane dehydrogenation
	Choice for phosphoric acid production and SO ₂ recovery
	(yellow)
	Electric furnace process for phosphoric acid
	Haifa process for phosphoric acid
	SO ₂ recovery from gypsum waste
	S and SO ₂ recovery from gypsum waste

Eco-Industrial Park

Existing Plants in the Optimal	New Plants in the Optimal Structure
Structure	·
Ammonia	Fermentation to ethanol (corn)
Nitric acid	Bio-ethylene from dehydration of bio-ethanol
Ammonium nitrate	Transesterification to FAME and glycerol (soy oil
Urea	and algae)
UAN	Algae oil production
Methanol	Bio-propylene glycol from glycerol
Granular triple super phosphate	Gasification to syngas (corn stover)
(GTSP)	Formic acid
MAP and DAP	Graphite
Contact process for Sulfuric acid	Propylene from CO2
Wet process for phosphoric acid	Propylene from propane dehydrogenation
Power generation	
Existing Plants Not in the Optimal	New Plants Not in the Optimal Structure
Structure	
Acetic acid	Fermentation to ethanol (corn stover)
Ethylbenzene	Anaerobic Digestion to acetic acid (corn stover)
Styrene	Methanol – Bonivardi, et al., 1998
	Methanol – Jun, et al., 1998
	Methanol – Ushikoshi, et al., 1998
	Methanol – Nerlov and Chorkendorff, 1999
	Methylamines (MMA and DMA)
	Ethanol
	Dimethyl ether
	Hydrogen/synthesis gas
	Acetic acid – new process
	Styrene - new method
	Electric furnace process for phosphoric acid
	Haifa process for phosphoric acid
	SO2 recovery from gypsum waste
	S and SO2 recovery from gypsum waste



Eco-Industrial Park

GREEN CHEMISTRY AND CHEMICAL ENGINEERING

CHEMICALS FROM BIOMASS

Integrating Bioprocesses into Chemical Production Complexes for Sustainable Development

Recap:

- Eco-industrial parks provide shared resources, outlets for byproducts, and utilities
- The Louisiana Case Study demonstrated that a biomass based chemical complex can be sustainable, provided there is an outlet for the CO₂
- A Triple Bottomline Profit allows the screening of potential processes for further evaluation
- Model reduction methods can be applied to high fidelity process models and used for optimization model
- An optimization based mathematical framework for a region allows for relatively simple analysis for potential process plants

- Measuring Progress Towards Sustainability was written for Engineers, giving them a way to quantify sustainability for engineering decisions
- Key impact areas can be identified, and improved based on the Sustainability Footprint Method

"Measure what is measurable, and make measurable what is not so" - Galileo Galilei

Subhas K. Sikdar · Debalina Sengupta Rajib Mukherjee *Editors*

Measuring Progress towards Sustainability

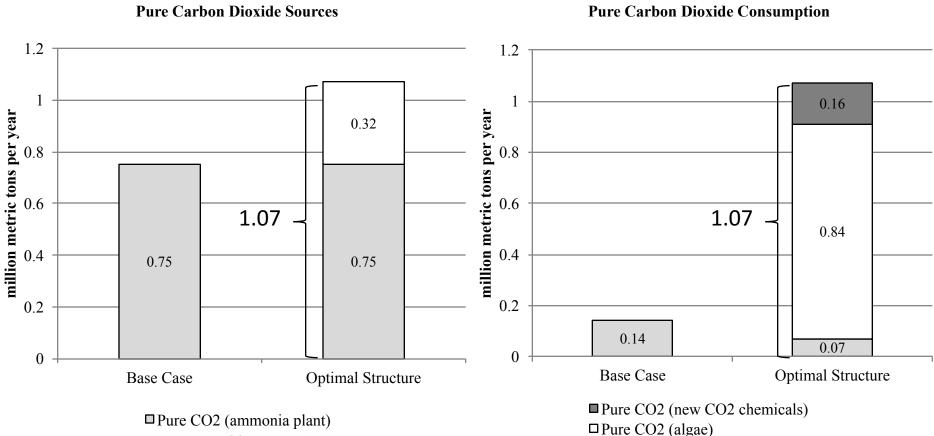
A Treatise for Engineers

🖄 Springer

We look forward to collaborating with talents and leaders in academia, industry, and government in a true partnership to achieve advancement and make a difference in the area of gas and fuels.

> Questions, Comments: debalinasengupta@tamu.edu (225) 223 - 9046

Comparison of Base Case with Optimal Structure (Triple Bottomline)

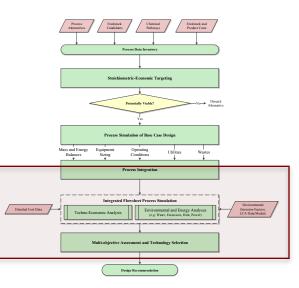

	Base Case Million \$/year	Optimal Structure Million \$/year
Income from Sales	2,026	2,490
Economic Costs	697	516
Raw Material Costs	685	470
Utility Costs	12	46
Environmental Costs	457	313
Sustainable Credits(+)/Costs(-)	-18	-10
Triple Bottomline	854	1,650

Comparison of Base Case with Optimal Structure (Energy Requirement)

	Base Case (TJ/yr)	Optimal Structure (TJ/yr)
Ammonia	3,820	3,820
Methanol	2,165	1,083
Sulfuric acid	-14,642	-14,642
Wet process phosphoric acid	5,181	5,181
Corn Ethanol	na	4,158
Fatty Acid Methyl Esters	na	1,293
Others	4,374	5,512
Total Energy	898	6,405

Comparison of CO₂ use in Base Case and Optimal Structure

Base Case CO_2 Emission (million metric tons per year) : 0.75-0.14 = **0.61** Optimal Structure CO_2 Emission (million metric tons per year) : 1.07-1.07 = **0**


□Pure CO2 (bioprocesses)

□ Pure CO2 (existing chemical plants)

Utility Type	Base Case Utility Cost (MM\$/yr)	Integrated Case Utility Cost (MM\$/yr)	Integrated and Intensified Case Utility Cost (MM\$/yr)
Cooling Water	8.4	3.6	1.2
LP steam	35.5	31.9	4.0
Natural Gas Firing	15.7	7.1	7.1
Electricity	19.2	19.2	27.1
Total Utility	78.8	61.8	39.4

TEXAS A&M ENGINEERING EXPERIMENT STATION

Equipment Type	Base Case Capital Cost (\$MM, 2016)	Integrated and Intensified Case Capital Cost (\$MM, 2016)
Columns	90	71
Vessels	14	14
Reactors	46	46
Exchangers	100	54
Pumps	1	0.5
Compressors	34	54
Fired Heaters	19	11
Refrigeration Equipment	17	17
Total Installed Capital Cost	321	268
Outside Battery Limits(OSBL) 30% (as a percentage of Total Installed Cost)		
Detailed Engineering and Construction 30 % (as a percentage of Total Installed Cost + OSBL) Contingency 10% (as a percentage of Total Installed Cost + OSBL)		
Total Fixed Capital Investment	585	488

