

Celebrating Pi (T) Day with the

American Institute of Chemical Engineers

Cleveland Section

Joseph Yurko, PE, AlChE Fellow March 14, 2022

How do Chemical Engineers use Pi?

Pi is used with Material & Energy Balances

- For Industrial Tanks and Vessels (Material Balance)
 - Pi is used to calculate the volume in a vertical tank
 - Pi is used to calculate the volume in a horizontal tank
 - Pi is used to calculate the time to fill or empty a tank
- For Industrial Pipes (Material & Energy Balances)
 - Pi is used to calculate the fluid velocity in a pipe
 - Pi is used to calculate the pressure drop of fluid flowing in a pipe
- For Industrial Pumps (Material & Energy Balances)
 - Pi is used to calculate the motor horsepower to pump fluid through a pipe
 - Pi is used to calculate the carbon footprint of the pump motor horsepower

Using Pi (T) to calculate the volumes of tanks that are either vertical or horizontal.

Vertical Tank

Horizontal Tank

Beverage Production Facility: Where Pi is Applied

How Pi (TT) is used in our Flow Calculations with Fluid Dynamics

How to calculate the volume in a vertical tank knowing:

- •The tank height (H)
- •The tank diameter (D)
- •The liquid Level (L)

Pi = C / d = 3.14159...

Vertical Tank Elevation

Beverage Production Facility: Where Pi is Applied

How Pi (TT) is used in our Flow Calculations with Fluid Dynamics

How to calculate the volume in a vertical tank knowing:

Vertical Tank Elevation

Beverage Production Facility: Where Pi is Applied

How Pi (TT) is used in our Flow Calculations with Fluid Dynamics

How to calculate the volume in a horizontal tank knowing:

- •The tank height (H)
- The tank diameter (D)
- •The liquid Level (L)

Horizontal Tank Elevation

Beverage Production Facility: Where Pi is Applied

How Pi (★) is used in our Flow Calculations with Fluid Dynamics

NOTE: $Pi = \Pi = 3.1416...$

Determine the volume of a horizontal vessel given the diameter of the vessel and the liquid level inside the vessel

3olution Steps	Run#1 Run#2 Units
Enter Inside Tank Diameter:	5 2.5 • d
Calculate Tank Radius:	2.5 1.25 •r
Calculate r2:	0.5 0.25 • r2
Feet down from Tank Top to Liquid Surface -	2 1 Ft
Depth of Liquid from surface (D) =	3 1.5 Ft
Area - A -	0.61 0.15 Sq. Ft.
Area - B •	0.61 0.15 Sq. Ft.
COS Th -	0.20 0.20
Th -	78.46 78.46 degrees
AL -	11.54 11.54 degrees
Area - C -	11.08 2.77 Sq. Ft.
Total Area (A + B + C) =	12.30 3.08 Sq. Ft.
Length (H) =	10.00 10.00 Ft.
Liquid Volume (Cu Rt) =	123.01 30.75 Cu Ft.
Liquid Volume (Gal) =	920.22 230.05 Gal
Transfer Rate (t) = <u>Cu Pt</u> (FIND) <u>Cu Pt</u> Minute Minute	3 3 <u>Cu Pt</u> Minute
FILL Time (T) - <u>Volume</u> (FIND) Minutes	41.0 10.3 Minutes

Transfer Rate

Horizontal Tank Elevation

HORIZONTAL VESSEL PARTIALLY FILLED WITH LIQUID

FIND:
The volume in rubic fleet of the Horizontal Vessel:
RH + (or oss sections) flow area / (wettest per inverer)
COS (Th) = 4 / r = (D-1) / r

[Ab = 90 - COS1-28 COS (Th))
AREA C = pir 'd' 2 / 4 * [1280+(2-A8)/360]
b = (r*2 - (D-1)/r | C-S)
AREA A = AREAB = 0.5 * ((D-1) * b)
Total Cross Sectional Area = A = B = C
d*2 = 4 * (Total Cross Sectional Area / pi

Multiple the total cross sectional area by the length of the vessel

Using Pi (TT) to calculate the volumes of tanks that are either vertical or horizontal.

Pi = C / d = 3.14159...

Vertical Tank

Horizontal Tank

Use Pi ($\uparrow \uparrow \uparrow$) to calculate the Energy to Pump a Fluid in a Pipe. Use the Carbon Footprint of the Pumping Energy comparing different pipe sizes. This will generate the most sustainable pipe size and pump size in the system design process.

Pump & Motor

Energy to Pump Fluid in Pipe

Carbon Footprint of
System Pumping Energy

Pharmaceutical Production Facility: Where Pi is Applied

How Pi (★) is used in our Energy Calculations with Fluid Dynamic Pump Head Where the fluid flow velocity inside the pipe is calculated as:

 $V = Ft^3 / sec / \pi x d^2 / 4 = Ft / sec of fluid flow velocity in the pipe$

Needed to calculate the optimum pump size:

- •The pipe inside diameter (d, in feet)
- •The pipe length (L, in feet)
- The installed pipe cost per foot (\$/ft)
- •The fluid and flow rate (gpm, or ft^3/sec)
- The fluid density (ro) and viscosity (cP)
- The pump cost (\$, in USD) and efficiency (ep)
- •The pump motor cost (\$) and efficiency (em)
- •The sustainable engineering Life Cycle cost of electricity per pound of Carbon Dioxide

Pharmaceutical Production Facility: Where Pi is Applied

How Pi (TT) is used in our Energy Calculations with Fluid Dynamic Pump Head

Pi = C / d = 3.14159...

How to calculate the Optimum Pipe Size (Min. – Max.):

- •Trial & Error Technique
- Bisection Method
- Based on Flow Rate (gpm)
- •First Try Minimum Dia. (1")
- Secondly Try Maximum Dia. (2")
- •Select Value in between (1.5")

Pharmaceutical Production Facility: Where Pi is Applied

How Pi (11) is used in our Energy Calculations with Fluid Dynamic Pump Head

STANDARD PUMP MOTOR HORSEPOWER & COST (estimated) TABLE

0.25 Hp	\$100	3 Hp	\$1,200	25 Hp	\$10,000	100 Hp	\$40,000
0.5 Hp	\$200	5 Hp	\$2,000	30 Hp	\$12,000	125 Hp	\$50,000
0.75 Hp	\$300	7.5 Hp	\$3,000	40 Hp	\$16,000	150 Hp	\$60,000
1 Hp	\$400	10 Hp	\$4,000	50 Hp	\$20,000	200 Hp	\$80,000
1.5 Hp	\$600	15 Hp	\$6,000	60 Hp	\$24,000	250 Hp	\$100,000
2 Hp	\$800	20 Hp	\$8,000	75 Hp	\$30,000	300 Hp	\$120,000

Pharmaceutical Production Facility: Where Pi is Applied

How Pi (\mathfrak{T}) is used in our Energy Calculations to generate a Carbon Footprint that will be used to evaluate the system sizing and sustainable design

Sustainable Engineering, Principles and Practices, Dr. Bakshi, Cambridge University Press, 2019

Pharmaceutical Production Facility: Where Pi is Applied

How Pi (11) is used in our Energy Calculations to generate a Carbon Footprint that will be used to evaluate the system sizing and sustainable design

Using Pi (177) we found our Energy Calculations to generate:

- 1. Optimum Pipe Diameter of 1.5"
- 2. Pump Motor Size of 10 Hp
- 3. Carbon Footprint of 7 Lbs of CO2 per 1,000 hours of running time.

Use Pi (n) to calculate the Energy to Pump a Fluid in a Pipe. Use the Carbon Footprint of the Pumping Energy comparing different pipe sizes. This will generate the most sustainable pipe size and pump size in the system design process.

Pump & Motor

Energy to Pump Fluid in Pipe

CWRU Capstone
Xellia Senior Project
2020 Spring Semester
Carbon Footprint of
System Pumping Energy

How do Chemical Engineers use Pi?

Pi is used with Material & Energy Balances

- For Industrial Tanks and Vessels (Material Balance)
 - Pi is used to calculate the volume in a vertical tank
 - Pi is used to calculate the volume in a horizontal tank
 - Pi is used to calculate the time to fill or empty a tank
- For Industrial Pipes (Material & Energy Balances)
 - Pi is used to calculate the fluid velocity in a pipe
 - Pi is used to calculate the pressure drop of fluid flowing in a pipe
- For Industrial Pumps (Material & Energy Balances)
 - Pi is used to calculate the motor horsepower to pump fluid through a pipe
 - Pi is used to calculate the carbon footprint of the pump motor horsepower

Industrial Production Facility: Where Pi is Applied

References:

