

Update on Ohio Hydrogen Hub Strategy February 2024

American Institute of Chemical Engineers February 15, 2024

Andrew R. Thomas

Midwest Hydrogen Center of Excellence Energy Policy Center Levin College of Public Affairs Cleveland State University

SARTA Hydrogen Fuel Cell Bus Refueling Station Canton, Ohio

Mapping a Clean Hydrogen Economy

Levin

Urban.csuohio.edu

Source	2030	2040	2050
Electrolysis via Nuclear Power	9,300	50,700	59,600
Electrolysis via Renewable Sources	86,600	112,800	135,900
Natural Gas (SMR)	341,700	490,100	1,788,400
TOTAL	437,600	653,600	1,983,900

Units are in metric tons.

- Electrolytic production limited to 15% of power generation capacity.
- Hydrogen from natural gas is what must be supplied to meet demand after accounting for pink and green hydrogen.
- 1.8 million metric tons of hydrogen supplied via SMR would require around 280 bcf of natural gas.
 - $\circ~$ 280 bcf \approx 12.5% of what Ohio shale wells produced annually.

Levin Urban.csuohio.edu

Department of Energy Hydrogen Earth Shot

- First of several DoE
 Earth Shots aimed at
 decarbonization of:
 - Transportation
 - Electricity generation
 - Manufacturing
- Goal: \$1.00/kg clean
 hydrogen by 2030
 - Gray hydrogen already \$1/kg
 - Green -- around \$7/kg
 - Blue around \$3-4/kg

- But storage and distribution 2/3 of total cost at pump.
 - Currently \$14/kg in California (\$7/galequivalent)
- Hydrogen Shot seeks infrastructure cost reduction of 80% by 2030.
 - Department of Energy 6/20/21 Press Release (Energy.gov)

Levin Urban.csuohio.edu

Willingness To Pay

Willingness to pay, or threshold price, for clean hydrogen in several current and emerging sectors (including production, delivery, and conditioning onsite, such as additional compression, storage, cooling, and/or dispensing). Current costs of hydrogen production depicted do not include impacts of regulatory incentives, such as those in IRA.

Source: U.S. Department of Energy 2023

Levin Urban.csuohio.edu Comparison of Cost and Carbon Intensity for Various Small-Scale Hydrogen Production Options.

Method	Cost (\$/kg H ₂)	Carbon Intensity (kgCO ₂ e/kg H ₂)
SMR: delivered via LH ₂ ^a	5.93	9.81 ^b
SMR: onsite, no capture	3.22	8.98
SMR: RNG, no capture	4.49	$2.22 - 5.32^{\circ}$
SMR: onsite with capture (blue)		
- with geological storage	3.65	2.44
- with EOR/ECOF	3.52	4.17
- with EOR/MCOF	3.47	4.40
- with RMC	3.27	2.44
Electrolysis (green) – no grid	7.43	2.58

- This hydrogen is compressed and liquified in Sarnia, Ontario, Canada, and delivered ca. 270 miles in LH₂ tanker trailers to SARTA. Importantly, this method of delivery arrives under pressure, and little or no additional on-site hydrogen compression is required for storage. This cost needs to be accounted for in a true apples to apples comparison.
- The incremental carbon footprint assumes negligible boil-off losses at the Sarnia trailer refill and during transit, and emissions of 220 gCO₂e/tonne/mile due to fuel consumption.
- The lower bound represents WWTP RNG at 19.34 gCO₂e/MJ and the upper bound represents landfill RNG at 46.42 gCO₂e/MJ.

Levin Urban.csuohio.ed Federal Investment Into Clean Energy

Bipartisan Infrastructure Bill

- \circ \$73 billion over 5 years on grid infrastructure
- \circ \$50 billion over 5 years for weatherization
- \$8 billion for clean hydrogen infrastructure
- \$1.5 billion for hydrogen research
- \$12 billion for carbon capture and sequestration

Inflation Reduction Act

- No Cap federal tax credits that can be converted to cash – 30-50% of project cost
- Covers renewable power, geothermal, microgrids, H2
- McKinsey estimates credits at over \$400 B over ten years – without H2
 - With H2, estimated at \$1 trillion

Dept of Energy Clean Hydrogen Hub Timeline

Urban.csuohio.edu

Levin

Funding of between \$400M and \$1.25B for phases 2-4 combined.

\$7 Billion in Awards Made in October 2023 for Clean H2 Generation

7 of 33 finalists awarded hubs

ARCH2 -- \$925 mm (led by Battelle)

- Ohio, West Virginia, Pennsylvania, Kentucky
- Other Winners: California, Gulf Coast, Heartland (Minn), Mid-Atlantic, Midwest (III), Pacific NW
- \$1 Billion more coming for market development programs
 - Notice of Intent summer 2023 for clean hydrogen off takers

Requirements

- Production capacity of at least 50 to 100 metric tons/day
- 50% non-federal cost share
- Clean H2 defined as less than 4 kg CO2e/kg H2 for lifecycle emissions

ARCH2 Project Summaries

- **MPLX:** H₂ storage facility development with connective infrastructure to support ARCH2 producers, storage, and end-users
- **Dominion Energy Ohio**: H2 production with CO₂ capture to supply H₂ to regional transit (e.g., SARTA)
- **Plug Power/ Amazon:** One distribution center with H₂ fueling MHE; fueling station FCEV delivery trucks.
- **First Mode:** H₂ end-user: Manufacturing facility for retrofitting mining trucks with H₂ fuel cell power system.
- **Independence Hydrogen:** H2 production facility using industrial off-gas as feedstock in Ashtabula, Ohio to provide clean hydrogen for material handling equipment at distribution centers.

<u>Note</u>: Proposed project locations based on preliminary siting are subject to change during the detailed planning phase (phase 1).

Source: Battelle Memorial Institute 2023

> H_2 production tax credit up to <u>\$3/kg</u> depending on lifecycle CO₂ intensity

kg of CO ₂ per kg of H ₂	Maximum credit
2.5 – 4 kg of CO ₂	20%
1.5 – 2.5 kg of CO ₂	25%
0.45 – 1.5 kg of CO ₂	33.4%
0 kg – 0.45 kg of CO ₂	100%

Carbon intensity of gray hydrogen ~9 kg CO_2 /kg H₂

- Maximum credit depends on satisfying prevailing wage requirements
- Not stackable with 45Q carbon sequestration credits

> IRS rule 45V development – Guidance issued in December 2023.

- Taking comments until Feb 26, 2024
- Additionality, Locality, Timing requirements
- IRA Investment Tax Credits
 - o 30% cost of refueling stations, 15% of the cost of commercial fuel cell vehicles
 - 30% of cost of hydrogen storage equipment

Why Do We Need Geologic Storage?

Total Great Lakes Region Carbon Sink Potential 2022-2050

Potential Carbon Dioxide Sinks	Cumulative CO2 Removal Capacity (gigatons)
Reforestation	2.2
Aggregates for Construction and Concrete	0.79
<u>Geologic Storage</u> Deep saline aquifers Depleted oil and gas reservoirs	14-51 1.8-5.3

Great Lakes Region CO2 Emissions: 1.5 Gigatons/yr

(1 gigaton = 1 billion metric tons)

Source: "Capturing the Economic Opportunity of Carbon" Global CO2 Initiative, University of Michigan 2022

A UPSTREAM EP

CARBON CAPTURE | TRANSPORT | UTILIZATION | STORAGE

OVERVIEW OF EPA INECTION PERMIT CLASSES FOR CO₂ INJECTION (CLASS-II/VI)

By: Tariq Siddiqui; MAR 2022 ©

CCS Geology in Ohio Total Prospective Storage by Formation

Mt = megatonnes, kt = kilotonnes

Ohio's Class VI Primacy Strategy

□ Ohio must demonstrate that its statutes and regulations meet US EPA requirements for effectively preventing endangerment of underground sources of drinking water (USDW).

- North Dakota, Wyoming and Louisiana only states with primacy
- Ohio General Assembly passed (governor signed) HB 175, effective July 2022, directing ODNR to begin Class VI well primacy application process.
 - ODNR has engaged US EPA on <u>crosswalk</u> process to map state regulations to federal requirements.
 - Permitting, well constructure, operations, post-injection monitoring, decommissioning
 - Members of state legislature have been engaged and presented with model enabling statutes that meet federal requirements.
 - Legislative Service Commission has prepared draft of ORC.
 - Ohio's 2-for-1 regulatory requirement. Could impede primacy application process.
 - Other issues: pore space ownership, unitization

Levin Urban.csuohio.edu

Energy Policy Center Midwest Hydrogen Center of Excellence Levin College of Public Affairs Cleveland State University

Andrew R. Thomas

Executive in Residence a.r.thomas99@csuohio.edu

Mark Henning

Research Supervisor m.henning@csuohio.edu

Shelbie N. Seeberg

Research Assistant s.seeberg@csuohio.edu