NUCLEAR POWER ACCIDENT ANALYSIS

ANDREW OHRABLO

0

Ò

BIO

- Andrew Ohrablo
 - Bachelor of Science Nuclear Engineering University of Wisconsin at Madison
 - Senior Thesis Design of Liquid Metal Fast Breeder Reactor
 - Perry Nuclear Power Plant, Perry, OH 2014-Present
 - Maintenance Engineering Supervisor Current Position
 - Maintenance Electrical Engineer
 - Work Week Manager
 - Cooper Nuclear Station, Brownville, NE 1999-2014
 - Shift Technical Engineer
 - Senior Reactor Operator NRC License Number 44337
 - United States Navy Nuclear Electrician USS Enterprise 1987-1993

REVIEW

• Terms:

- Scram Shutdown of reactor by insertion of control rods
- Reactivity Coefficient Change in neutron population for a change in reactor parameter
 - Positive coefficient power goes up when parameter goes up
 - Negative Coefficient power goes down when parameter goes down
- Reactivity change of power for change of parameter

REVIEW CONTINUED

- Automatic Scram signals (not all inclusive)
 - High water level
 - Low water level
 - High reactor pressure
 - Closure of Main Steam Isolation valves
 - High reactor power
 - High drywell pressure
 - Turbine trip

EVENT CATEGORIZATION

- Incident of Moderate Frequency once per 20 years
- Infrequent Incidents once between 20 to 100 years
- Limiting Fault Never expected to occur
- Abnormal Operating Transient Analysis of both Moderate and Infrequent events
- Special Event Events not postulated until reactors were built
- * Presentation is based upon USAR Chapter 14 of Cooper Nuclear Station a \sim 800MWe boiling water reactor with a mark 4 containment

ABNORMAL OPERATIONAL TRANSIENTS

- Pressure Increase
- Moderator Temperature Decrease
- Addition of Positive Reactivity
- Reactor Vessel water inventory Decrease
- Reactor Core Flow Decrease
- Reactor Core Flow Increase
- Reactor Water Inventory Increase
- Reactor Water Coolant Temperature Increase

ABNORMAL OPERATION TRANSIENT SAFETY DESIGN BASIS

- Radioactive release rates below normal operating limits (10CFR20)
- No fuel failures
- No coolant system parameters above normal piping stress limits
 - No challenge to the reactor coolant system

SPECIAL EVENTS

- Shutdown From Outside of Control Room
- Shutdown Without Control Rods
- Anticipated Transient Without Scram
- Station Blackout

Safety Design Basis

• Special Event Terminated

ACCIDENTS

• Total of five but only one that will be discussed

• Loss of Coolant Accident Concurrent with a Station Blackout

• Safety Design Basis

- Radioactive release below EPA standards
- Fuel Cladding Failure will not occur based on mechanical or thermal performance
- Piping stress below accident requirements
- Containment stress below accident requirements
- No overexposure of Control Room Operators

PRESSURE INCREASE

Concern because pressure increase results in immediate power increase

- Turbine Stop Valve Closure
- Turbine Governor Valve Closure

Main Steam Isolation Valve Closure * (MSIV)
 Mitigated by:

• Scram on Turbine Trip or MSIV closure

*Worst case scenario

MODERATOR TEMPERATURE DECREASE

Concern because temperature drop results in power increase

- Loss of Feedwater Heating
- Loss of Shutdown Cooling

Inadvertent initiation of High-Pressure Coolant Injection*
 Mitigated by:

• Reactor Water High Level Scram or Operator Action

ADDITION OF POSITIVE REACTIVITY

- Continuous Control Rod Withdrawal during operation* (~30% power)
- Continuous Control Rod Withdrawal during Start Up
- Control Rod Withdrawal Shut Down
- Incorrectly loaded fuel cell during refueling
 Mitigated by:
- Control Rod Block (no Scram)

REACTOR VESSEL WATER INVENTORY DECREASE

- Pressure controller fails high Opens bypass valves*
- Inadvertent opening of safety valve
- Loss of feedwater flow
- Loss of auxiliary power loss of condensate pumps
 Mitigated by:
- MSIV closure and water injection via HPCI and RCIC systems
- Notes:
 - low reactor water level scram not credited
 - Power response limited by voiding of core to lower power

REACTOR COOLANT FLOW DECREASE

- Recirc flow controller failure
- Trip of one Reactor Coolant Pump
- Trip of both Reactor Coolant Pump Motor Generators
- Reactor Coolant Pump Seizure
 Mitigated by:
- Nature of the design

REACTOR COOLANT FLOW INCREASE

- Recirc flow controller failure*
- Start of one Reactor Coolant Pump

Mitigated by:

- Design of rate of change of flow controller
- High Power Scram

REACTOR WATER INVENTORY INCREASE

- Reactor Feedwater flow controller failure
- Results in excessive subcooling of feedwater
- Results in excessive inventory
- Mitigated by:
- Reactor Water High Level Scram

REACTOR WATER COOLANT TEMPERATURE INCREASE •Loss of Shutdown Cooling Mitigated by: Operator Action Can only occur when shutdown and depressurized Operators re-establish shutdown cooling

SPECIAL EVENTS

- Shutdown Outside Control Room
 - Mitigated by:
 - Shutting down reactor with local controls
- Anticipated Transient Without Scram (ATWS)
 - Mitigated by:
 - Manual Scram insertion
 - Initiation of Boron injection

SPECIAL EVENTS

- Shutdown Without Control Rods
 - Mitigated by:
 - Initiation of Boron Injection
- Station Blackout (loss of offsite power and Diesel Generators fail to start)
 - Mitigated by:
 - Remove pressure using safety relief valves and steam turbines (HPCI, RCIC)
 - Maintain level with steam driven pumps (HPCI, RCIC)
 - Black out response systems are battery operated

ACCIDENTS

Only Discussing one: Loss of Coolant Accident (LOCA) with loss of offsite power (LOOP)

Assumptions:

- Double guillotine shear of recirc pump suction piping
- Loss of offsite power
- Leak is large enough that reactor depressurizes and high pressure injection sources do not have a steam supply to drive the turbines
- One additional failure at time of accident:
 - Worst case scenario is failure of a diesel generator

ACCIDENT RESPONSE

- T-14 seconds:
 - Recirc pump suction line shears and completely displaces
 - Offsite power trips
 - Initiation of LOOP-LOCA signal to start emergency systems
 - One train of emergency systems fails to start
- T-O seconds:
 - One DG starts
 - Signal to one RHR pump to start
- T+5 seconds:
 - Second RHR pump starts
 - Service water pump starts to cool the diesel and suppression pool
- T+10 seconds
 - Core spray pump starts

CONCLUSION

- Nuclear reactors are designed to mitigate a wide arrange of events from abnormal operational transients, special events and accidents.
- Nuclear Reactors cannot be licensed without being able to demonstrate that there will be no release of fission products to the public for AOTs or special events
- Nuclear Reactors cannot be licensed without being able to demonstrate that there will be no release of fission products above accident limits for Accidents

QUESTIONS?

 \square

Ó

 \bigcirc

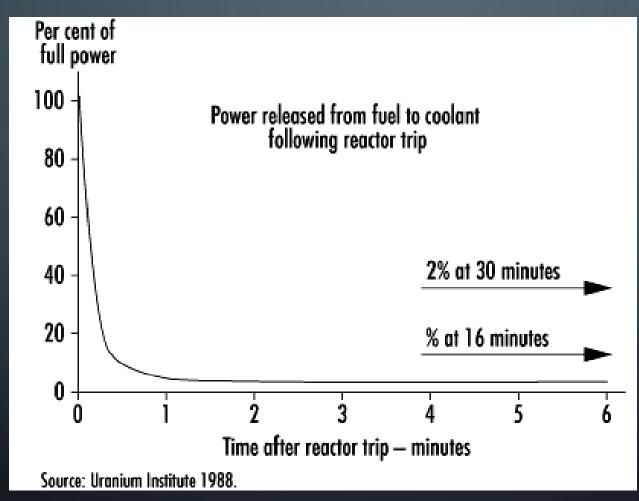
0

Q

TERMS

- Critical status of nuclear reactor where the number of neutrons in one generation is equal to the number of neutrons in the previous generation – power is remaining constant
- Reactivity Relative departure from critical for a nuclear reactor
- Sub-Critical status of nuclear rector where the number of neutrons in one generation is less then the number of neutrons in the previous generation – power is going down
- Super-Critical status of nuclear rector where the number of neutrons in one generation is more then the number of neutrons in the previous generation – power is going up

TERMS (CONTINUED)


- Barns measure of cross section of a nucleus for a specific reaction higher barns means a nucleus is more likely to react
- Absorption nuclear reaction where an incident particle is absorbed into the nucleus
- Capture Nuclear reaction where an incident particle remains in the nucleus following absorption
- Fission nuclear reaction where an incident particle results in the mother nuclear splitting into two or more nuclei
- Beta Decay where an excited nucleus releases energy in the form of a positron or electron and a nucleon is changed from a proton or neutron to bring the nucleus to a lower energy state⁽
- Alpha decay where an excited nucleus releases an alpha particle to bring the nucleus to a lower energy state
- Alpha Particle Essentially a helium atom without the electrons. Two protons and two Neutrons

COEFFICIENTS OF POWER

- A coefficient of power is a change in the physical properties of the reactor and how it affects the neutron life cycle
- A positive coefficient of power will result in a rise in neutron population from one generation to the next. A power increase.
- Coefficients of power
 - Temperature
 - Pressure
 - Voids
 - Doppler
 - Poisons

DECAY HEAT

0

DOSE CONCERNS

• Four potential effects on cells due to radiation:

- Radiation passes through cell without damage occurring
- Cell repairs itself and no further damage occurs
- Cell dies This occurs millions of times a day even without radiation
- Cell does not repair itself and replicates in the damaged form
 - Body identifies and eliminates
 - Potential to cause cancer
 - Potential to pass to next generation

DOSE LIMITS* (10CFR20)

- Radiation Worker
 - Whole Body 5 Rem/yr
 - Any Organ 50 Rem/yr
 - Lens of Eye 15 Rem/yr
- Member of Public
 - 100 mRem/yr
 - 1,000 mrem = 1 Rem
- Data shows that high doses of radiation may cause cancers. But there is no data to establish a firm link between cancer and doses below about 10,000 mRem (10,000 mRem – 100 times the NRC limit). *
 - Average US resident receives annual exposure of about 620 mrem/yr

IMMEDIATE EFFECTS OF RADIATION**

- 0-10 Rem No observable effect
- 10-100 Rem Slight to moderate decrease in white blood cell counts no observed long term effects
- 100-200 Rem Significant blood cell count reduction, nausea, vomiting, rarely fatal
- 200-500 Rem Nausea, vomiting, hair loss, severe blood damage, fatalities

Compare to occupational limit of 5 Rem/year