

Central Engineering

Diamond Shamrock Battleground Evaporator System

Perils of an Ancient Fortran IV Simulation

Don Harvey Bob Fowler

March 13, 2025

Area View from the Battleship Texas

The Scene of the Action— 1200 t/d 50% NaOH Plant

Central Engineering

Diamond Shamrock's Battleground Plant in Houston, Texas. 5

Management Concerns— Four Technical Objectives

- Determine Overall System Operability and Stability to Load & Set Point Changes & other Upsets
 - Confirm Corporate Investment—Failure was <u>not</u> an Option
- 2. Tune the Control System
- 3. Locate Bottlenecks
- 4. Find a Startup Method
 - No one had ever successfully started and operated such a complex plant
 - SS Operation was one Thing; dynamic Operation was totally unknown.
 - $\circ~$ Cell Liquor would be used to Charge all Effects:
 - It was the resulting Liquor from electrolyzing NaCl Solutions
 - a) Aqueous, approximately 10% NaCl, 10% NaOH
 - b) Very different from SS Compositions in the Effects
 - c) Desired Product 50% NaOH Aqueous Solution

Who We Were in 1973

- Dr. Don Harvey was an Assoc. Prof. of Chemical Engineering at CSU
 - His Specialty was Thermo but He taught a Course in Dynamic Simulation
 - He had met our Central Engineering Process Manager at a local Section AIChE Meeting and a Marriage was born!
 - o Don was our Lead Engineer
- 🔹 I started full Time at Diamond Shamrock on April Fool's Day, 1973. 😂
 - My graduate Work had been in Biochemical Engineering and Catalysis
 - The word Simulation (with IBM's CSMP) had appeared in my Resume but
 - I really had 0 Experience with *creating* simulation Software. However, ...
 - a) Simulation was in its infancy
 - b) No comprehensive canned Software available for Dynamic Modeling
 - c) No one Else available either, soooo

We Got the Job!

- Fantastic learning experience for me!
 - Essentially did a post-Doc under Don.
 - He is a Superb Engineer, Mentor and Friend!

- We developed a wonderful working Relationship and Friendship.
 - He had a little Experience with Simulation but a LOT with fundamental Chemical Engineering.
 - I knew a Little about the Operation of IBM Mainframes to go with my basic ChE education but very Little about creating Simulations.
 - We complemented each Other very well.

The Schedule

- The plant had been designed by Zaremba, Inc. of Buffalo, NY in the 60's
 - Quad Design thought to be very Energy efficient
- McKee Engineering (then a Stone's throw away from here over I77) was overseeing Construction in 1973 when we started
- Startup was scheduled for about Thanksgiving, 1974
- It was April, 1973, so we had about 1½ years to:
 - Write all Software from Scratch including all of the Simulator's Hardware and Physical Property Subroutines
 - Debug the Software
 - Get It to run dependably on an IBM Mainframe including
 - Finding reliable Convergence and Integration Methods
 - Confirm the Numbers on the P&ID ...
 - Meet all those Requirements set forth by Management

Simulator Creation

The Givens

- **1. P&ID** with <u>SS</u> Conditions showing:
 - i. Flow Rates
 - ii. Compositions
 - iii. Temperatures
- 2. Physical Model of the Plant at LaPorte
 - i. Measured line lengths, number/type of fittings, etc. from this model
- 3. Centrifugal Transfer Pump Curves
 - i. ΔP -Flow rate relationships with impeller diameters as parameters
- **4.** Control Valve Coefficients (C_v) as Functions of Valve Stem Positions
- **5. Roger Franks' Text**, *Modeling and Simulation in Chemical Engineering*, with fundamental software
- 6. All Unit Ops and other Basic Expressions and Relationships
- **7. Physical Properties** (ρ, solubilities, BP's, P°, h's [single & multi φ, water])

Software Tools

- 1. Fortran II transitioned later to IV
- 2. Various curve fitting Techniques--Sometimes involved use of Paper Tape Input (!) to offline Computers
- 3. Minimal Experience with Numerical Methods but learned fast!
- 4. Wegstein and/or Half-Section for convergence
 - <u>Many</u> convergence Problems (steep Curves) from the start, so...
 - Transitioned to the slower Half Section Method if crazy Solution
 - Always Wegstein when Stability returned
 - Eventually developed Bounded Wegstein
- Eventually used Newton-Raphson simultaneous multi-Variable Convergence with Numerical Estimation of the Jacobian for Effect Pressures

- 6. Integration by Euler or 4th order Runge-Kutta
 - Reverted to RK4 exclusively as time went on
 - Systems were Invariably *Stiff* necessitating small Time Steps
 - Caused by subsystems with very different Time Constants
 - Time Step was increased with decreasing Integration Error Estimate
 - Ended up being very Reliable

Creating the Simulator

Central Engineering

Model Required Creation of Subroutines in Fortran IV for

- Physical Properties of all Process Materials (via Curve Fits)
 - Steam Tables
 - Solution Densities as a Function of Concentration
 - Solution Boiling Points
 - Solubilities (Ternary System Isotherms as Functions of Concentration)
 - Liquor Enthalpies as Functions of Concentrations and Temperature
- Pump and Valve Coefficient Curves
- PI and PID controllers (Franks offered introductory Examples)
- Flash Routines (given h and Ρ, calculate Τ, φ's and Compositions)
- All kinds of other Utility Routines (e.g., Mix, Split, Pumps, etc.)
- Software to model System Flow Rates using "Electrical Analogy"

Bernoulli Equation:

 $\Delta P_p = (P_2 - P_1) + (\rho_g/g_c)(h_2 - h_1) + \Delta P_f$ Defn. of Friction Factor, f:

$$\Delta P_{fl} = [v^2 \rho / 2g_c] \cdot [\Sigma L / D] \cdot f = R_l Q^2$$

(Flow-Head Relationships) _{Ce}

The Electrical Analogy

$$(\Delta P_p = Pump Pressure Rise)$$

(Line, Manual Valve & Fitting Losses; Q=Vol. Flow Rate)

Control Valve Losses:

 $\Delta P_{fv} = (Q/C_v)^2 \rho = R_v Q^2$ Total Line Friction Pressure Drop:

 $\Delta P_{f} = \Delta P_{fl} + \Delta P_{fv} = (R_{l} + R_{v})Q^{2}$

(Design: at least 35% of total ΔP_f through Control Valve at SS)

Rearranging the Bernoulli Equation results in:

 $\Delta P_p - (P_2 - P_1) - (\rho_g/g_c)(h_2 - h_1) = Q^2(R_V + R_l)$ which is analogous to E = IR although Flow is squared. Kirchoff's Laws now apply.

Programming Considerations

- 1. The simulator needed to thoroughly model inherently non-linear flow-head Relationships (Electrical Analogy) & superimposed Heat Flows.
- 2. Differential Variables (those with long Time Constants) were determined.
 - All other Variables were solved for algebraically
 - Saved Computer execution Time
 - Reasonable Approximation
- 3. Then Algebraic Equations are solved at Time 0 using Initial Conditions for Differential Variables
 - Differential Variables integrated to time t + Δt
 - Differential Variables updated followed by algebraic Solution of all other System Equations
 - Differential Variables re-integrated; repeat Process to Time t_{final}.

- 1. Integrate Differential Variables at Time $t+\Delta t$
 - Controller Signals \rightarrow Control Valve Positions $\rightarrow R_V$ (R_l's fixed)
 - Vessel volumes \rightarrow Vessel Levels (h_i)
 - Overall Compositions & Enthalpies $\rightarrow T_i$
- 2. Assume all Vessel Pressures
- 3. Solve all Heat and Material Balances Algebraically including
 - Steam Generation in each Vessel
 - Flow Rates between Vessels
- 4. Converge all Steam Pressures by comparing Steam Generated with Steam Consumed in next Vessel
 - Done individually at first
 - Later simultaneously via Newton Raphson

Running the Simulator

All Runs were Batch using Punched Cards

- **Central Engineering**
- Started a Batch run carrying Boxes of Cards from the 13th to the 12th Floor
 - Always hoping that we didn't drop Them!
 - $\circ~$ Had to read 2 Boxes in <u>every Time</u>
 - Read in Main Program & all Subroutines including Physical Properties
 Couldn't store ANYTHING on the Computer
- We submitted our Jobs into HASP's K, L or M Queues and waited
 - K, L & M Queues dedicated to Engineering
 - Increasingly large Slices of Physical Memory all the way up to 250K!
 - Always last Priority after Corporate Business Jobs
 - Virtual Memory not yet available
- Eventually our Runs required so much CPU Time that
 - We were forced to run Simulation Jobs at Night—One at a Time
 - Often negligible Results, so we waited until the next Night to run again.

Hardware Tools

- Our hardware tools consisted of
 - An IBM system/360 44 (no Software Storage or Virtual Capabilities)
 - Eventually a 370/158 Virtual Machine became available
 - o IBM Cards
 - Card Punches
 - Card Readers
 - o Line Printer
- No CRT's or anything else modern but those above were State of the Art
- No debugging or automatic Disk allocation capabilities available 20

Central Engineering

Tools of the Trade

						01	BR	A	B	01	TK	1		-			1	P	0	1	50	H	A	YE						K	9	CI	ł		E	S,T	Y	0				1	5	'E	F	T	11	1 ·													
-	1 4	113			19	4	1.8	•	•	2.1	1 <u>11</u>	1	19	201	<u>n</u>		24	10	71	2	121	-	-	11	3	4.2	36	35			-	-		6		1.40	1 41	50 2	VI 5	2 33	54	55 1	<u>* 5</u>	-	-	-	1	63	64	55 8	4.63	60	89	0.7	11	23	14 2	1	11	82	5.8
						1	1			1	1	1						I	1											1								1				1	I																		
0 0	0 0	0	0	0 0	0	0 1	0 0	0	0	0	0	0				Ī	Γ	8	0	0	-	0	8		0	T	L			0	0	0	0	0	8	T		0	I				0	0	0	ij	0	I		1	T	Ĺ		Ī	L	1	T	I	1	T	Î
11	11	1	ì	1	1	Ē	11	1	1	1	1	1	1	1	1.	11	1	1	1	11	1	1		1	11		1	1	1	14	-	1	11	1	1	1.1	1	1	11	1	1	1	1	11	1	1	11	1	1	11	11	1	1	•7 1	15	1	11	1	1	82	
2 2	2 2	2	2	2 2	2	21	2	2		2 :	2	2	2	2	2	2 2	2	2	2 :	2 2	h	2	2	2	2 2	12	2	2	2	2	2	2 :	2 2	2	21	12	2	2	2 2	2	2	2	2 2	2 2	2	2 2	2 2	2	2	2 3	2 2	2	2	2.2	ż	2	2 2	2	2	2 2	
3 3	3 3	3	:	3 3	- 3	3	n 11 3 3	23	11 3	31			15 3	3	3	22	3	2 3	3	13	21	3	3	3	3	13		31	3	3 3	3	17.1	0 H 3 3	1	4 3	14	3	3	3 3	51	54	35 1	3 3	13	3		1 63	83	64	8 A 3 C	5 61	-	3	17	11 3	111	2.9	12.00	17	1 1	ĥ
		4			4				4			4	4	4																				I,			1				Ì																				
1		6			1	-	11 12	13	14	15.1			ñ	20	8	22	1	-	24	1	1	-	8	12 2	0			11		9.4	0	21	1) 44	45	46.0	1.0	-	50.5	1.5	53	M	15 1	-	- 14			1.62	111	-		10	-			12	12.1	4 .4 14 2	4	11	**	1
5:		2	3	::	2	2	5 5	3	2	2	2 3	0	3	2	5	2	3	5	21	2	5	5	5	5	10	, ,	2	2	2	5 5	5	5 :	5.5	5		5 5	P	5	5 5	5	5	51	1	1	5	5 5	5	5	5	5 5	5 5	5	5 :	5	5	5 5	5 5	5	5	5-5	1
61	6 6	6	8	6 6	8		6 6	6	6		5 6	6	6	6	6	6 6	6	6	ļ	6 6	6	6	6	6 6	5 6	5 6	6	6	6 1	6 6	6	51	6 6	8	6 1	5 6	6		6 6	6	6	6 1	6	6		6 6	6	6	6	6 6	6	6	6 (6	6	6 6	6 6	6	6 1	5 6	į
1	11	1	1	11	1	1	11	1	1	1	17	7	7	7	1	1	1	i	1	11	7	1	1	7	11	17	1	1	1	11	7	7	11	1	1	17	1	7	17	1	7	1	1	1	1	17	1	7	7	11	17	1	1	1	1	1	11	7	1	17	
8 1	8 8	8 8	8	8 8	8	8	8 8	8	8	8	8 8	8	8	8	8	8 8	8	8	8 1	8.8	8	1	8		8 8	8 8	8	8	8 1	8 8	8	8]		8	8 1	8 8	8	8 1	8 8	8	8	8 1		8	8 1		8	8	8	8 8	8	8	8 8	8	8	8 8		8	8 8	8 8	
7	1 4	1 9	.5 9	1 1	- 9	10		9	14	91	6 II 9 9	9	19	30	1	17.7	9	2 4	9	0.8	19	20	9	94	13 N 9 / 9	1 9	× g	37 9	18 1 9 1	9.9	41	9	9.9	10	9 1	7.49 9.9	45	9 1	1 5	53	54 9	50 S		9	99.0	-	41	41	1 0	0.0	9	4	4 1	0	72	71 5	4.75	4	17 1	1 23	
2.		1	6	5	1,	1		6	14	12	d,	1	18	a	a.	2.2	1.1	ls.	а.		2	32	53	2,	11.5	4.25		D.	4		hi	42.4	114	la.	4.4	1 41	l.a	÷.	3.2	di,	Ň.	8	ds	.56	58.4	ale	2	63	üh	5.5	10.	2	6	11	22	20.0	475	2	a ; 17 ;	1 75	1

Fun with JCL

Central Engineering

- 1. Used to control Batch Runs and to create inflexible Disk Space "Data Sets"
- 2. Commands used with IBM Job Control Language (JCL):
 - a. JOB, EXEC, DD, ENDJOB.

b. Had to learn and extract JCL Routines from a Multi Volume Manual

3. Consequences of Use

a. Frequent Overruns of Results filled Data Sets and stopped Execution

- i. Needed to constantly delete and create new, larger Data Sets since *All* Commands had to be given to the Computer manually.
 - The Operating System wasn't designed to perform *any* of these Tasks on its own.

ii. Typical Data Set command: something like *Disp=(End, Catlg, Delete)*

4. A CSU Grad Student, (now) Dr. Paul Husted, eventually aided us with JCL

5. IEFBR14—Drove us up a Wall!!

- Eventually the Program wouldn't fit into any Allocated Physical Computer Memory space
 - When this happened, Everything literally stopped.
- With the 360/44 had to learn to manually create "Overlay" Structures
 - Groups of Subroutines (specified by us) which the Computer swapped into and out of available Physical Memory as the Program ran
- Problems:
 - Had to basically regroup the Software—also drove us up a Wall!
 - Took substantial amounts of Time to set up
 - Values of Variables weren't kept as Routines were swapped in and out
 - Necessitated putting almost all Variables into Common Blocks
- Not an issue of course with Modern, Virtual Memory Computers

Central Engineering

- *The* Major, very Time-consuming Issue
- Division by 0 was a constant Problem
- Problem Indicator: Hex Program Location Indicator (what's that?)
- Our Most Effective debugging Method
 - This Technique Indicated the *Proximity* of the Problem.

With such a large program, Don and I were sometimes so confused by the Nature of the Bug that, on a nice Day, we were known to go down to the little Shop on the ground Floor, buy a Bag of Doritos, go outside and walk around the Block sharing them to clear our heads!

<u>THE</u> most Insidious Bug

Call Subroutine A (x, 2, y, z
Subroutine A (x, i, y, z)
x = y + 2.
i = i + 1
z = 3. + y
Return
End
j = 2
Print "j = ", j
j = ?

- **REALLY** drove us to eat Doritos!!
- It took us **DAYS** to find this one.
- It's an Access Violation—not allowed by modern Computers

Results

- Our sole Output was 132 character-wide printed Sheets
- Output Information from 5 Vessels included
 - o **Temperatures**
 - o Pressures
 - o Flow rates
 - Compositions
 - Slurry Concentrations
 - Liquid Levels
 - Control Valve Positions
- The Conference Room Happening!
- It was literally a Technical Luxury

	VESSAR HERE	HTS CI-SH VS. TIME		14
				+
1.59E JU 2.318 40	J.ON DO J. #5E DO 4.02E DU 5.	398 00 0.168 00 0.931 00 7.708 00 s+6 H	03 9+242 00 ¥118 ¥153	-*
0.0 ****************		***************************************	3" 48442E 00 #"00000E 00	1 1
	0, e		4-02946E 00 4-29930E 00	
1.444	DA E	5	4=05828E 00 4=31207E 00	
A MARKAN A	DA S	· · · · · · · · · · · · · · · · · · ·	* 114035 00 4.315095 00	10
19141	04 6	2	4.1100/F 00 4.32310F 00	- 10
	NU & Z	2	4 14 21 4 C 00 4 23 214 00	
×	20 A 4	1	5-19203F 00 5-136368 00	
	BU AL	Č.	5,22363F 00 4,34035F 00	
	#0 AE		4,254836 00 4,344128 00	
10.0 +	- #************************************		+. 286288 00 +.347618 00	. 1
	a u At	5	4.317968 00 4.351148 00	1
	D U 4E		4.349848 00 4.354428 00	£ 14
	# Q. L	5-	4.38196E 00 4.35760E 00	6
		6	*. *1 * 3*E 00 4.30045E 00	5
			4,44678E E0 4,36335E D0	5 11
			4. 51 1455 00 4.165768 00	
		- -	A-367501 00 A-171001 00	1
			5-57203E 00 6-17216E 00	100
20.3	- ************************************		+- 56 306F 00 +-1755+F 00	
Contraction of the second second second			4. 535018 00 4. 177718 00	
	B 0 L R	5	*.51329E 00 4.37982E 00	
	B O EA	6	4.495235 00 4.381758 00	
	8 0 #A	£	4.47862E 00 4.3e358E 00	
	8 Q EA	6	4.46220E 00 4.305458 00	
	6 W 8A	5	4.44318E D0 4.38702E 00	1.12
		6	4,42727E 00 4,38875E 00	
	a 0 K	5	+.+D#21E 00 +.39032E 00	5
	B U B		9.39782E 00 4.39182E 00	5 5
3010			- 14 7831 AG + 184416 AG	
	A		5. 31 7841 00 5.39540F 00	
	n () A4	Ê.	4-29148-00 4-192014-00	
	L L A F		4.263968 GO 4.398248 00	1
	J U AL	c.	4.285328 06 4.199275 00	1
	U D A t	6	4.205528 88 4.403418 00	F
	H DA A	L	**114231 00 ***01445 00	6. 12
		5	*.142518 00 *.+02438 00	6
	4 UA 8	6	4.13541* 00 4.403350 00	6
ACAG RECEIPTION ADDRESS			a district of a socies of	5
			4.04027E 00 4.406634 00	
			4.507552 00 4.400376 00	1.1
	B But P	1	1.910205 00 0.000000 00	
	a Ali E		A-870118 00 \$-502921 00	
	2.4.6. 7		3.440854 00 4.400484 00	6 11
	44 W 8		3. 78340E 00 4.40408E 00	
	* 0 K	L.	1.725948 00 6.403482 00	£
	8 W E	Contraction and the second	3.66329E 00 4.40627E 00	£ 1
30.11	a design of the design of the design of the second s		second h addings do a addade as	

- Basic Software written relatively early on
 - \circ $\,$ Kept adding to it as Time went on
- Except for minor Issues with our Software and Convergence and Integration Issues, the basic Simulator was complete by late 1973 or early 1974.
- First interested in
 - o Confirming the basic Design
 - Tuning the Control System
 - Confirming System Stability
- At this point, Problems which occurred with the Simulator's Performance were relatively mild.
- And then there were

Our Customers

- Term includes HQ Divisional Engineers and all Plant Engineers
- Very skeptical of how these two Pointy Heads with their fancy Software and no in-plant Experience could assist Them in their real World.
 - VERY real Problem!!
 - During this initial Phase of Software Development, the Plant was still under Construction.
 - Often times we suggested Design Modifications
 - Especially with the Impeller Sizes of the Centrifugal Transfer Pumps
 - Our Model showed that they were invariably too small to accommodate even modest transient Conditions
 - Issues: (1) Every Surface exposed to the hot Caustic/Salt Solutions was made of expensive Nickel
 - (2) Larger Impellers more costly to operate.

Startup Simulation

- Starting such complex Plant had never been attempted by Anyone Anywhere
- The First Step was to meet with the Customers, their Drawings and Grease Pencils.
 - They told us how They *would have* started the Plant—Step by Step.
 - We loaded their Conditions into our Simulator.
- Their Startup conditions:
 - Had to use Cell Liquor everywhere because higher Concentration Liquors had never been produced there
 - Apparently it was impractical to truck some of similar Concentrations (and Elevated Temperatures) in from Elsewhere
 - But using Cell Liquor everywhere was far removed from SS conditions
 - Customers insisted that Controller Settings not be Changed from SS
 - Primary Steam only—Steam for other effects unavailable initially. ³¹

Startup Simulation (II)

We entered the Customers' Suggested Startup Procedure into the Model

- Immediately encountered **MAJOR** Issues:
 - $\circ~$ Salt built up in the 1st Effect where there was no way to remove it.
 - Sluggish Control System was totally incapable of handling Startup Conditions in automatic.
 - So the plant would have to be started manually with the Control System eased back to automatic as the Effects approached steady state. Fairly easy to model with the Simulator.
 - Issues with the Levels in several Effects—especially the Third Effect, but we were able to *manually* control them all.
- Any of these would have stopped Operations in its Tracks.
- All these Issues were unanticipated but became obvious as the Customers thought about Them.

Startup Simulation (III)

- Customers finally agreed that... WOW!! ...
 - These *were indeed* **major** Issues that they hadn't anticipated which would have cost them major Downtime to analyze, clean up and fix.
- Faith in our Simulator was in its Infancy but their Skepticism started to wane!
- Example of a Fix:
 - Totally unanticipated Water Line to the First Effect proved necessary to keep the Salt in Solution as the First Effect lined out.
 - Imagine: the Effects were designed to remove Water, and now we were deliberately adding Water to one of Them!
- We developed Guidelines for when Manual Control was to be initiated and then discontinued
- Even included a home-made PD controller.

Startup Simulation (IV)

- The Customers had closely followed the Results of our Progress in creating a Workable Startup Process, solving Problem by Problem (usually one per night).
- Over time they realized our Model made sense and had uncovered a Myriad of unanticipated Process Issues.
 - They totally bought into our Results
 - No more Skepticism!!
 - Working together, we worked out Fixes for *every* Problem
 before Construction was complete and the actual Startup initiated
- In the End we created a complete, step-by-step Startup Hardcopy Manual which was issued to all interested parties.
- It became the "Startup Bible".

- After a Year and half of Development, Testing and Working with the Customers, we were all ready to go.
- During Startup Don and I stayed in Cleveland, close to the Computer just in case ⁽ⁱ⁾ (there was certainly no WWW in those Days!).
- We were on Long-distance¹ for the entire Afternoon and Evening of the first Train's Startup.
- All of the corporate big wigs, including the CEO, were present in the Control Room for the Startup holding their collective Breaths. I think.

¹The expensive, old-fashioned type of Long-distance

Central Engineering

The actual Sequence of Events <u>closely matched</u> those predicted by our "Startup Bible" as Startup commenced, buuut...

- The Level in the First Effect went off script and kept dropping.
- At one Point They reported to us that the Level in the Third Effect • was rising to dangerous Levels.
- Beyond that there was a Physical Problem with Gaskets in one of the Control Valves that delayed the Startup.
- But that was it.
- In the end, the Plant basically started in one Shift.
- Maybe Management breathed a Sign of Relief—but They didn't tell Us.
- But I did get a couple of Tickets to a Browns Game. 😁

The Finale

- One day I had a chat with the Liaison Engineer for the responsible Operating Division, Diamond's ElectroChem Division:
- I casually mentioned to Him that we thought we had saved the Corporation a few million Bucks in Startup Costs (including negligible Downtime).
- The Guy looked at me and said, "Don't ever tell *Them* that!"
- I started to say Something, but He added "They think You saved Them \$60M" (1974)! —about \$400M today.
- The alleged DuPont Story.
- It was a wonderful Start to this Engineer's Career!
- Thanks for Everything Don!!
- And Thanks To Our Customers For Their Support!!!

And Thank You for Listening.

How about some Easy Questions?