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Engineering Digital Twins

Process Digital Twins

Online Process Digital Twins
* Closed Loop Optimization
* Processes and Typical Benefits

e What’s Next
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What is a Digital Twin?

Digital Twins integrate internet of things, artificial intelligence, machine learning and software analytics with spatial network graphs to
create living digital simulation models that update and change as their physical counterparts change.

© Microsoft — Azure Digital Twin
“A Digital Twin is a virtual representation of a real object. Digital Twins are designed to optimize the operation of assets or business

decisions about them, including improved maintenance, upgrades, repairs and operation of the actual object. Digital Twins include the
model, data, a one-to-one association to the object and the ability to monitor it.”

© Gartner — Adopt a Data Governance Strategy for Long-Term Digital Twin Success (Published 20th Dec. 2018, ID: G00377062)

A digital twin is a digital representation of a physical object, person, or process, contextualized in a digital version of its environment. Digital
twins can help an organization simulate real situations and their outcomes, ultimately allowing it to make better decisions.

McKinsey -What is digital-twin technology? July 12, 2023 | Article
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Types of Engineering Digital Twins

* Physical
e External Structures
* Piping . .
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* etc.
) VISUALIZAT oy,
e Electrical Enriches the Digital Twin with the
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Process Digital Twins

Building a Bridge from Plant Design to Plant Operations
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Keys to Closed Loop Online Optimization

 Reactor Models

. . Economic Updating
* Equation Oriented Models — converge faster /

* Real Time Sequencer

Steady State Detection
Data Reconciliation
Model Parameter Update
Constraint Projection
Solve Objective Function
Send Optimization Targets

* Nonlinear Solver

* Closed Loop
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Control Perspective

Process Measurements

Manipulated Variable

Controller Setpoints

Setpoints

D
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e e LTS 2070,
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Process Ouput

On-line Optimization: Adv. Process Control: Basic Control:
® Maximize Economics ® Dynamic operation e Regulatory
e Steady-state operation e Constraint handling « SISO or MISO systems
e Operating constraints e Disturbance rejection

e Multivariable .~
Updates: 4-8 hours Updates: ~ 1 sec.

Updates: ~ 1 min.
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Defense against Bad Data

Scan ] Reconciliation Data  Screening Data ] Checks] HeconciliationHesults] Mates ] Diagnostics]

* Data Screening, Flexible Consequences

® Use LaSt GOOd Scan Last [Raw] Scan 230 F Inserted Value F
. Last Reconciled Yalue 232658 F ast Good Baw Scan Yalue
. Use Last Reconciled Value Lost Good Raw Sean v = -

e  Substitute Curve Fit Value = Foe sty s S
Minirmurm W alue: F Tl o

° Stop SOIUtion M awimum Y alue ’7 F |SetQuaIit_l,l ToBad

° Simplified Material Balance & Reconciliation Maximum Relative Change fraction (52t Qualty To Bad
M axirum Absalute Change F [set Quality To Bad

Maxirmum Sge hi [set Quality To Bad

Lol Led Lel Lol

Scan  Reconciliation Data l Screening Data] Checks] HeconciliationHesults] Mates ] Diagnostics]

[ Use Instrument from Meazurement Clazs Manager | J Fesponze to bad quality: |Use Last Good Raw Scan Yalue ﬂ
Range Lowwer Range Upper Relative Error | Absolute Error | &hsolute Error
Bound Blound [Erel] [Eab=1] [Eab=2]
LI F F percent F percent
1e+020 1e+020 a0 1 0

oK | Cancel Apply Help

Calculation method for standard deviation  Eabs = Eabs1 + Eabs2 * [Full Scale Value - Refialuel

+ =rmax [Eabs, Erel % |Scan - Ref/alus(]

" =SORT[Eabs™2 + {[1+Erel) » [Scan - Refaluel}"2] - Scan - Refialue|

™ Getrange from measurement class r

Fief alue Full Scale Last
[instrument zero] oF Walue 0o F StdDew F

South Texas Section AIChE — November 2, 2023 oz | L | Apply | L) |




Data Reconciliation and Performance Calculation

* Integrated Data Reconciliation Data | Veldaion Vaiee Surma | Notes | Disgrostcs |
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Automate Performance Monitoring

* Real Time System (RTS)

* Graphical environment for scheduling and sequencing real-time activities
* Monitor online sequence

E3)

Sequence Properties: Preheat_Demo
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Other Online Optimizer Features

 Communication with Plant Historian and other Databases
* Interactive Modeling Environment

* Open for Third Party Components
* Reactor Technologies
e User Added Models

 Model Reparameterization
* Heat Exchanger Fouling Factors

* Equipment Efficiencies
* Rotating Equipment
* Fired Equipment

* Catalyst Activity

* Expose Sensitivities — partial derivatives
* Reporting
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Other Online Process Digital Twin Uses

* Material Balance — Material and Volume Balances Only — Find meter errors

* Process and Equipment Performance Monitoring

* LP Vector Updating for Planning Systems

 Utilities Optimization — Requires Mixed Integer Linear Programming (MINLP)
* Plant Wide Optimization

——————————————————————————————————————————

* Green Optimization ; DATA DETECTON —
COLLECT validation of gross error |
! PTIMIZATION
| plant data steady state & ! © ©
: detection reconciliation :
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: |
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ANALYSE Real-time
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Stepwise Approach to Optimization

Material Heat & Material Rigorous Data Performance Optimization
Balance Reconciliation Reconcilation Monitoring Online or Advisory
Mass & Volume Mass & Heat Mass, Heat Reconciliation
Balance Balance & Equilibrium & Simulation QETIMIZATION
Incremental Value
e Daily Material e Material & Heat e KPI Evaluation *KPI Evaluation e Closed loop 24x7
Balance Reconciliation e Inferential sensors eUnit/Equipment optimization
e No Thermo required | ¢ No separation e Separation Monitoring e Automated Setpoints
e Monitor Meter prediction efficiencies e\What-if Case e Integrated with APC
accuracy Studies
e Gross Error
Detection

Increasing Model Fidelity

Increasing Benefits
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Typical Processes and Benefits

* Refining
e Olefins 100% /\
* Natural Gas Processing so% ® Real Time Optimization
 Utilities 0%
. Cogeneration Plants Advanced Process Control
+ Electrical | E o
ectrica mport/ xport B Advanced Regulatory
* Hydrogen Management 20% - Control
0% m Distributed Control
. . . . . . . System
Unit Typical Benefits Typical Capacity = Typical Annual Benefits Capital Cost %
Crude / Vacuum 10 cpb 135 kbpd $4,455,000 Potential from
FCC 18 cpb 60 kbpd $3,564,000 Applications (%)
Hydrocracker 18 cpd 30 kbpd $1,782,000
Ethylene S5 per mt 500 ktpa $2,500,000
LNG $1.50 per mt 1000 ktpa $1,500,000
NGL Recovery / Fractionation ~ $15/MMSCFD 200 MMSCFD $1,100,000
Utilities

$500,000 - $2,000,000
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Material Balance Case Study

Problem 2
. . . . . . . . . " ¢‘{"
e Meter inaccuracy hindering decision making in planning, maintenance, process AT, -~
engineering and optimization > IJ"‘“ T
o . . . | e — a5
e Current refinery-wide planning tool could not match refinery operations — ’
— DD

Objectives
¢ Daily material balance around each major unit & plant

e Identify bad meters
e Pinpoint material loss location

. . . . . . . . DataRec P t f Met i
« Simplified mass balance of the entire refinery including intermediate tanks e e e e o eers
%...

Benefits % N
e Reduced Meter errors from 20% to less than 5% 15 7y Wr/\v\
e Found meter error in Hydrocracker Feed and Reformer overhead liquid flow %‘”
¢ Prevent emissions & improved yields 5 \\/W\ A

N AWES
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Process Equipment Performance Monitoring

= Problem
— Compressor and heat exchanger performance degrades over time
— Operations don’t know impact of performance degradation

— How is the compressor operating currently vs. how it is supposed
to operate

— How is exchanger fouling impacting process performance

= Solution
— Model based performance monitoring
— Track Design vs. Actual efficiency for compressors

— Track impact of clean versus actual heat exchanger performance on
energy usage and throughput

= Benefits

— Know when it is economical to service compressors and clean heat
exchangers

— Prevent damage to valuable and costly machinery
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Stand-alone Real-time Optimization (RTO) Implementations

Crude Distillation Unit RTO Reformer RTO

* Independent Unit RTOs

CDU/VDU products characterize the feed -.' et boning
Of the units downstream Reformer Feed N w Product Blending

- 0 NN AN
P Reactor gl | MOGAS

CiorEl g
Hvy Virgin Naphta
Product Blending Sales Price
Crude distillation units, reformers,

FCCU RTO
FCCU, energy systems, H, systems, (O Reformer e ]

A h 1 J
Product Blendin
etc. L ’

FCCU Feed

A number of these sites have RTO VG010 FocU ™
—
systems on all major process units

VN to Reformer

Many refineries and chemical sites have
installed RTOs for one or more
processing units

LCN/HCN

to Mogas Blend

Slurry to HFO Blend

Product Blending
Cycle Oils to Diesel Blend

-
%
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Multi-Unit / Refinery-wide Product Complex

Optimizes a whole process complex

* e.g. Naphtha Complex, Distillate Complex
Scope includes finished product blending

* Product specifications, demand/supply drive the optimization of upstream processes

* Economics driven by feed and finished product prices — few / no intermediate product prices
Scheduler specifies daily feed and product supply / demand needs directly in the RTO/APC
Flexible to respond to different product demand / supply and operating situations

* Maximizes profit, or when logistics constraints, minimizes loss

r —————
E

xample Distillate |
I rr0 Boundary | I~ =

e s e e e .
|
*Existing Model _|—— Kero
| 50 _ —  HDT
Crude | - L .
L= Diesel
Import _L HDT

VGO

South Texas Section AIChE — November 2, 2023

_______ 1
Jetf 1.
Kero
|
> _ _l—l—l'
Diesel
, |
I—_P Gasoil — 1
|
|
_______ J

LPG
Naphtha

let
Domestic
Diesel

Export
Diesel

Gasoil

Residue



Refinery-wide Optimization

RVP
| | 'y > LPG
RVP But
utane
Crude Naphtha —  |ISOM RON v — Premium
Assays (Offsites) I > Stab Benzene
ab. | D95 .
H2 | Gasoline
Crude Blend — S Regular
Naphtha Ref
i — Reiormer —————
KERO Sp“t' > Reformate
H2
— | HDS* et/
et >
5 CDU Flash Kero | L—» Jet
Model Boundary LGO H2 o
v Freeze Densit
Y Domestic Diesel
Sulfur
Example Decision Variables [ HGO Diesel Cloud
> » Diesel
Tower/React Temp HDT i Export Diesel
Temp Cut Point
Feed Flowrate | D95
Octane Number > AGO
Sulfur Content VGO
VDU
Viscosity
l Y A 4 —>  Residue Fuel Oil

I—> To Deasphalt Unit
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Long Term Planning

e Planning and Decision Support

Nonlinear

Turnaround scheduling

Evaluate feedstock

Evaluate cost of constraints

Update LP vectors On a More Frequent Basis
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Artificial Intelligence and Machine Learning

versus First Principles Modeling

* Some digital twins are not based on exact physical models
* only use experimental datasets and machine learning algorithms

e Al does have some advantages
* For example, build a model using a deep neural net to capture the true dynamics of the data

 However, generalizing this model to other objects requires a large number of samples in order to obtain a
reliable general model.

e Also, are Mass, Energy and Equilibrium balances assured?

 When working with physical models we require less data to obtain an accurate general model.
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Thank You!

Bill.Poe@se.com


https://www.linkedin.com/in/bill-poe-0a32104/

