Production of Alpha-emitting Radionuclides for Cancer Therapy

Saed Mirzadeh

Medical Radioisotope Program Nuclear Material Processing Group

Nuclear Security and Isotope Technology Division

Knoxville-Oak Ridge Section of the American Institute of Chemical Engineers,

Thursday, November 10, 2016

Outline

- Background
- Availability of ²²⁵Ac/²¹³Bi and ²²⁴Ra/²¹²Pb generator systems through natural decay of ²²⁹Th and ²²⁸Th
- New Initiatives to Enhance Production of Ac-225
 - a. Direct production of ²²⁵Ac in a high energy proton accelerator
 - Reactor Production of ²²⁹Th at ORNL
 High Flux Isotope Reactor (Nuclear Data)
 - c. Production of ²²⁹Th via low energy protons (Nuclear Data)
- *Xofigo, 1st* approved "targeted" alpha therapy (TAT) for treatment of advanced prostate cancer
- ²²⁷Ac production: larger scale pilot demonstration

ORNL's unique combination of radioisotope research and production assets

- High Flux Isotope Reactor (HFIR)
 - LWR, flux trap; 85 MW full power; peak thermal neutron flux of 2.1x10¹⁵ n.cm⁻².s⁻¹

Hot Cell and Processing Facilities

- Five active nuclear facilities including REDC and one radiological facility
- On path to reestablishing enrichment capabilities

Alpha-Emitting and Other Novel Therapeutic Medical Radioisotopes Available from ORNL

Alpha emitters:

- Actinium-225/Bismuth-213
- Radium-224/Lead-212
- Actinium-227/Thorium-227/Radium-223

High-energy Beta emitter:

• Tungsten-188/Rhenium-188

Low-energy Beta emitter:

Strontium-89

Therapeutic Nuclear Medicine

Targeted therapy

 $-\alpha$, β , γ emitters delivered to diseased tissue

Strategies

- Molecular targeting: Monoclonal antibodies, peptides, etc; ⁹⁰Y, ¹⁷⁷Lu, ²¹³Bi
- Natural targeting: Thyroid (¹³¹I⁻), Bone(⁸⁹SrCl₂, ²²³RaCl₂, ¹⁵³Sm & ¹⁸⁸Re Phosphate complexes, ^{117m}Sn-DTPA), Liver (⁹⁰Y & ¹⁶⁶Ho particles)
- Brachytherapy: Prostate cancer (¹⁰³Pd, ¹²⁵I, ¹³¹Cs), others

Prostate Cancer Seed

"Xofigo, 1st α-emitting radioisotope (²²³RaCl₂), for treatment of bone cancer, received approval from FDA and European Commission in 2013"

"Zevalin",1st β-emitting radioisotope (⁹⁰Y-Ibritumomab tiuxetan) for treatment B cell non-Hodgkin's lymphoma

Alpha-Emitters for Therapeutic Applications

Important attributes

- High linear energy transfer
- Half-life compatible with therapy
- Versatile Chemistry
- Availability

Alpha-emitters of interest

- ²¹²Bi (60 m) and ²¹³Bi (46 m)
- ²¹²Pb(10 h)/²¹²Bi
- ²²⁵Ac(10 d)/ ²¹³Bi
- ²¹¹At (7 h, accelerator produced)
- ²²³Ra (11 d)
- ²²⁷Th (19 d)/²²³Ra

Radioimmunotherapy

ORNL²²⁵Ac /²¹³Bi Generator

Availability of ²²⁵Ac/²¹³Bi and ²²⁴Ra/²¹²Pb generator systems through natural decay of ²²⁹Th and ²²⁸Th

Radiochemical extraction from ²²⁹Th and ²²⁸Th sources

Radioimmunotherapy (RIT) Concept

Polyaminocarboxylate (PAC) Chelators and Fullerenes

CAK RIDGE NATIONAL LABORATORY

Kennel and Mirzadeh, 2000

²²⁵Ac - A Promising Isotope for α-Therapy

CAK RIDGE NATIONAL LABORATORY

Treatment of Acute Myelogenous Leukemia (AML) with Bismuth-213

Courtesy of Actinium Pharmaceutical Inc. and Sloan Kettering Cancer Center, NY

Peptide receptor α-therapy of glioblastoma with Bi-213

Courtesy of Alfred Morgenstern at ITU

Before treatment

7 weeks post 3rd treatment

5 weeks post 1st treatment

9 weeks post 4th treatment

5 weeks post 2nd treatment treatment continued to date : 5 cycles) Overall survival:>23 months

Patient 6 – Glioblastoma grade IV (male, 59 y)

Nanoparticles Platform for in-vivo Delivery of Radionuclides

LaPO₄ Nanoparticles Platform for in-vivo Delivery of Actinium-225

lsotope	Half-life	α-Energy (MeV)	α-Recoil Energy (keV)	Recoil Range (nm)
²²⁵ Ac	10 d	5.829	107	20
²²¹ Fr	4.9 m	6.341	116	22
²¹⁷ At	32.3 ms	7.067	130	24
²¹³ Bi	46 m	8.376	154	29

In-vitro Release of ²²⁵Ac, ²²¹Fr and ²¹³Bi from La(²²⁵Ac)PO₄ NPs

SPECT/CT of ²²⁵AcLaPO₄ Targeted Nanoparticles

MAb 201B-NP

MAb 201B-NP & cold MAb

MAb 14-NP control

Background of Actinium-225 Production at ORNL

- ORNL has been the main supplier of ²²⁵Ac (via decay of existing ²²⁹Th stock) since 1997, with an annual budget of \$1.8 M.
- 700-900 mCi of ²²⁵Ac is harvested annually from 130–mCi ²²⁹Th stock at ORNL.
- 6-12 campaigns are performed per year, and campaign 126 is currently underway

AK RIDGE NATIONAL I

D BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF

Rationale for R&D related to production of ²²⁵Ac

 The present supply of ²²⁵Ac is insufficient for current medical and research demands of ~6 Ci/year.

Annual Production of Ac-225

Production ²²⁵Ac from Decay of ²²⁹Th

CAK RIDGE NATIONAL LABORATORY

New Initiatives to Enhance Production of Ac-225

- Direct production of ²²⁵Ac in a high energy proton accelerator
- Reactor Production of ²²⁹Th at ORNL High Flux Isotope Reactor (Nuclear Data)
- Production of ²²⁹Th via low energy protons (Nuclear Data)

Direct production of ²²⁵Ac in a proton accelerator

The new collaboration between ORNL, BNL and LANL aims at developing a plan for full-scale production and stable supply of ²²⁵Ac by irradiating ²³²Th targets in the BNL BLIP and LANL IPF, and target processing at ORNL

ORNL Contributions:

- Develop the processing chemistry
- Evaluate yields and impurities
- Construct and evaluate ²²⁵Ac/²¹³Bi Generator
- Provide Ac and generator to selected customers for in vivo evaluation

1st publication of tri-lab efforts: Griswold et al, Large Scale Accelerator Production of ²²⁵Ac: Effective Cross Sections for 78-192 MeV Protons Incident on ²³²Th Targets (in print, App. Rad. Isot., 2016)

Challenges Associated with Accelerator-Based Production of ²²⁵Ac -- Complex Chemistry

Thorium Target Mass :

1-10 g – initial mass, 50-100 g – anticipated for Ci-level targets

Production of Radiolanthanides:

Significant challenge to separate trivalent Ln-isotopes from ²²⁵Ac (specifically ¹⁴⁰La and ¹⁴¹Ce)

Production of large quantities of fission products:

In the 100-200 MeV proton energy range, for every mCi of ²²⁵Ac, 12.5 mCi of fission products are produced

Timing: The ²²⁷Ac/²²⁵Ac ratio (~0.2% at EOB) gets worse with time

Toxicity: Biological toxicity of minute amount of 0.2% ²²⁷Ac in ²²⁵Ac is not evaluated

Accelerator Production of ²²⁵Ac (cont.)

Chemical Process for Accelerator-Produced ²²⁵Ac

For a 10 day irradiation of a 5 g cm^{-2 232}Th target at IPF or BLIP, yield of ²²⁵Ac is ~1.5 Ci at EOB with ~0.2% contamination from ²²⁷Ac

	Yield at EOB			
Radionuclide	IPF: 250 µA, 90 MeV		BNL: 100 μA, 192 MeV	
	(Ci)	(GBq)	(Ci)	(GBq)
²²⁵ Ac	1.5	5.6 × 10 ¹	1.5	5.7 × 10 ¹
²²⁶ Ac	N/M	N/M	3.2	1.2 × 10 ²
²²⁷ Ac	2.7 × 10⁻³	1.0 × 10 ⁻¹	3.1 × 10⁻³	1.1 × 10 ^{−1}
²²⁷ Th	6.3	2.3 × 10 ²	1.9	7.0 × 10 ¹
²²⁸ Th	2.2 × 10⁻¹	8.1 × 10 ⁰	8.0 × 10 ⁻²	2.8
⁹⁹ Mo	1.8 × 10 ¹	6.7 × 10 ²	5.4	2.0 × 10 ²
¹⁴⁰ Ba	3.1	1.2 × 10 ²	4.6 × 10 ⁻¹	1.7 × 10 ¹
¹³⁹ Ce	1.1 × 10⁻²	4.1 × 10 ⁻¹	1.6 × 10 ⁻²	5.9 × 10 ⁻¹
¹⁴¹ Ce	1.4	5.2 × 10 ¹	3.5 × 10⁻¹	1.3 × 10 ¹
¹⁴³ Ce	1.4	5.1 × 10 ¹	1.6	5.8 × 10 ¹
¹⁴⁴ Ce	9.0 × 10⁻²	3.5	3.3 × 10⁻²	1.2

HPLC Separation of ²²⁵Ac from ¹⁴⁰La and other radiolanthanides, showing only major radioactive species

Second HPLC Separation of ²²⁵Ac From ¹⁴⁰La – Gradient and Chromatogram

Reactor production of Th-229

1st term of cross-section refers to thermal and 2nd term to resonance integrals. The values in parenthesis are fission cross-sections at thermal and epi-thermal neutrons, respectively

Reactor Production of Thorium-229

- Projected ²²⁹Th yield for 6 cycle irradiations: 18-23 mCi per g of ²²⁶Ra, with ²²⁸Th and ²²⁷Ac contaminations of 3000 and 50 times larger.
- 20 mCi of ²²⁹Th will generate ~140 mCi of ²²⁵Ac per year

Reactor Production of Thorium-229, Hogle, et al., ARI, 114, 19-27 (2016)

Production of ²²⁹Th via Proton-induced Reactions on ²³²Th

Various Excitation Functions for Proton Bombardment of ²³²Th

Production of ²²⁹Th via Proton-induced Reactions on ²³²Th

Summary

- Excitation function for the ²³²Th[p,4n]²²⁹Pa reaction has been measured with good precision; excitation function peaks at 28 MeV, 150 mb.
- Measurements of thick target production show cross section is dominated by the following two reactions: ²³²Th[p,4n]²²⁹Pa(1.5 d, *EC*)²²⁹Th
 ²³²Th In e¹²²⁵A e^(C2) and ^(C2) and ^(C2)

 232 Th[p, α] 225 Ac(63 m, β) 229 Th

Irradiating 1 gram of ²³²Th (~0.5 mm) for 1 year at 100 µA of 35 MeV protons and exiting at 25 MeV would yield ~28 mg of ²²⁹Th (5.6 mCi).

Future Work

- Additional nuclear data for short-lived ²²⁹Ac is necessary to determine cross section of ²³²Th[p,α]²²⁹Ac reaction
- The thick target yield from ²³⁰Th target expected to be 3-5 times greater than from ²³²Th target

²²⁷Ac production: larger scale pilot demonstration

 ²²⁷Ac is made via irradiation of ²²⁶Ra targets at HFIR

 ORNL entered into a production R&D phase shortly after hosting the 2013 International TAT conference

Preliminary feasibility R&D was followed by two years of

1st HFIR Rabbit containing 2 Ra pellets

Building 3047 cleanup

1st 50-mg 226Ra pellet

Xofigo, 1st approved "targeted" alpha therapy (TAT) for treatment of advanced prostate cancer

 Prostate cancer is the second leading cause of cancer death in American men, behind lung cancer

²²⁵Ra Biodistribution

spleen

liver

- ²²³Ra targets new bone growth, like Ca
- ²²³Ra is derived from an ²²⁷Ac generator

35.0

30.0

25.0

20.0

15.0

10.0

5.0

0.0

skull

femur

sternum

kidney

%ID/g

Ra-226 target design

- Up to 13 pellets can be stacked in a welded-aluminum rabbit for irradiation at HFIR
- Total RaCO₃/Al volume: ~1.3 cm³
- Total Ra-226 mass: 0.7 g (0.749 g of RaCO₃)
- aluminum mass: 2.748 g
- Ra-226 mass limit based on heat calculations and the target temperature during irradiation (dose rates will limit Ra-226 mass per target to about 600 mg)

Figure 5. Configuration of 13 RaO/Al pellets for irradiation at HFIR. Some of the components include; 1) finned aluminum rabbit, 2) rabbit end caps (aluminum), 3) fill material – aluminum foil or quartz wool, and 4) radium oxide pellets (13) – 0.250" diameter and 0.125" thick.

New HFIR-HT rabbit design

- Changes were made to the rabbit design to facilitate the in-cell welding process
- The bottom cap will be EB-welded outside of the hot cell
- The circumference of the top cap will be welded first
 - under a helium cover gas
- The plug will be welded after evacuating the chamber and backfilling with high-purity helium (twice)

2

Rose Boll Roy Copping Sandra Davern David Denton Kevin Gaddis **Greg Groover** Justin Griswold Suzanne Hogle sm Karen Murphy Allison Owen Shelly Van Cleve Lance Wyant Dominic Giuliano (Design and Manufacturing) **Richard Howard (Heat Calculations)** Steve Owens (Thermodynamic Measurements)

Students:

Joseph Wright David O'Neil Mark Moore

Dan Stracener (Project Manger, accelerator produced Ac-225 and Ac-227) John Krueger (Oversight)^S)

