

Dynamic Real-Time Optimization: Concepts in Modeling, Algorithms and Properties

L. T. Biegler Chemical Engineering Department Carnegie Mellon University Pittsburgh, PA

November 28, 2007

Chemical	Dynamic Optimization Outline
ENGIMIERING	Introduction Typical Applications Problem Statement
1	Dynamic Optimization Sequential Methods Multiple Shooting Simultaneous Methods
	I <u>Off-line Case Studies</u> Unstable Grade Transitions Simulated Moving Beds Parameter Estimation – Reactor Models
IX	 <u>On-line Optimization</u> NMPC Case Study Advanced Step NMPC Moving Horizon Estimation
V	<u>Conclusions</u> Summary References

EXAMPLE Substitute z_{N+1} and u_N into ODE and apply equations at t_k : $r(t_k) = \sum_{j=0}^{K} z_j \dot{\ell}_j(t_k) - f(z_k, u_k) = 0, \quad k = 1,...K$

Chernical ENGIN ERING	Dynamic Optimization Engines		
Evolution of NLP Solvers:			
\Rightarrow for dynamic optimization, control and estimation			
	SQP		
	E.g., NPSOL and Sequential Dynamic Optimization - over 100 variables and constraints		
		2	

Single	Multiple Shooting	Simultaneous
n _w ^β N	n _w ^β N	
(n _w N) (n _u N)	$(n_w N) (n_u + n_w)$	N (n _u + n _w)
(n _w N) (n _u N) ²	$(n_w N) (n_u + n_w)^2$	$N(n_u + n_w)$
	n _w ³ N	
(n _u N)α	(n _u N)α	$((n_u + n_w)N)^{\beta}$
		$((n_u + n_w)N)$
	Shooting $n_w^\beta N$ $(n_w N) (n_u N)$ $(n_w N) (n_u N)^2$ $(n_u N)^\alpha$	Shooting Nulliple Shooting Shooting $n_w^\beta N$ $n_w^\beta N$ $(n_w N) (n_u N)$ $(n_w N) (n_u + n_w)$ $(n_w N) (n_u N)^2$ $(n_w N) (n_u + n_w)^2$ $n_w^3 N$ $(n_u N)^\alpha$ $(n_u N)^\alpha$

ENGINEERING	Simultaneous DAE Optimization	
	Case Studies	
	Reactor - Based Flowsheets	
	Fed-Batch Penicillin Fermenter	
	Temperature Profiles for Batch Reactors	
	Parameter Estimation of Batch Data	
	Synthesis of Reactor Networks	
	Batch Crystallization Temperature Profiles	
	Ramping for Continuous Columns	
	Reflux Profiles for Batch Distillation and Column Design	
	Air Traffic Conflict Resolution	
	Satellite Trajectories in Astronautics	
	Batch Process Integration	
	Source Detection for Municipal Water Networks	
	Optimization of Simulated Moving Beds	
	Grade Transition of Polymerization Processes	
	Parameter Estimation of Tubular Reactors	
	Nonlinear MPC	

Large-Scale Parameter Estimation				
Complex Kinetic Mechanisms				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Chain Transfer to Polymer $\begin{array}{l} P_{r,s} + M_{x,y} \xrightarrow{k_{Ip11}} P_{x,y} + M_{r,s} \\ P_{r,s} + M_{x,y} \xrightarrow{k_{Ip12}} Q_{x,y} + M_{r,s} \\ Q_{r,s} + M_{x,y} \xrightarrow{k_{Ip22}} Q_{x,y} + M_{r,s} \\ Q_{r,s} + M_{x,y} \xrightarrow{k_{Ip22}} Q_{x,y} + M_{r,s} \\ \hline \textbf{Termination by Combinion} \\ P_{r,s} + P_{x,y} \xrightarrow{k_{te12}} M_{r+x,s+y} \\ P_{r,s} + Q_{x,y} \xrightarrow{k_{te12}} M_{r+x,s+y} \\ Q_{r,s} + Q_{x,y} \xrightarrow{k_{te22}} M_{r+x,s+y} \\ \hline \textbf{Termination by Disproportionation} \\ P_{r,s} + P_{x,y} \xrightarrow{k_{te12}} M_{r,s} + M_{x,y} \\ P_{r,s} + Q_{x,y} \xrightarrow{k_{te12}} M_{r,s} + M_{x,y} \\ \hline \textbf{Reminiation by Disproportionation} \\ P_{r,s} + P_{x,y} \xrightarrow{k_{te12}} M_{r,s} + M_{x,y} \\ P_{r,s} + Q_{x,y} \xrightarrow{k_{te12}} M_{r,s} + M_{x,y} \\ \hline \textbf{Backbitting} \\ P_{r,s} \xrightarrow{k_{h1}} P_{r,s} or Q_{r,s} \\ P_{r,s} \xrightarrow{k_{h2}} Q_{r,s} or P_{r,s} \\ \hline \textbf{Becision} \\ P_{r,s} \xrightarrow{k_{h2}} M_{r,s}^{=} + P_{1,0} \\ P_{r,s} \xrightarrow{k_{h2}} M_{r,s}^{=} + Q_{0,1} \end{array}$			
$k = k_0 \exp\left(-\frac{E_a + P E_v}{RT}\right)$	 35 Elementary Reactions ~100 Kinetic Parameters 			

Real-time Iteration

Chemical

- · preparation, feedback response and transition stages
- solve perturbed (linearized) problem on-line
 - Li, de Oliveira, Santos, B. (1990+)
 - Diehl, Findeisen, Bock, Allgöwer et al. (2000+)
 - > two orders of magnitude reduction in on-line computation
- solve complete NLP in background ('between' sampling times as part of preparation and transition stages

Based on NLP sensitivity for dynamic systems

- Extended to Simultaneous Collocation approach Zavala et al. (2007)
- Develop Advanced Step NMPC
- Related to MPC with linearization constantly <u>updated one step</u>
 <u>behind</u>

AS-NMPC Stability Analysis

Nominal NMPC stability proof

•Nominal case – no noise: perfect model

•General formulation with local asymptotic controller for t $\rightarrow \infty$

Advanced step controller satisfies same relations, has same input sequence
 → shares identical stability property

Plant

$$\begin{aligned} x_{k+1} &= \bar{f}(x_l, u_l) = f(x_k, u_k) + g(x_k, u_k, w_k) \\ || g(x_k, u_k, w_k) || \leq L_J || x_k || + \sigma(|| w_k ||) \end{aligned}$$

Model

$$z_{l+1} = f(z_l, u_l), z_0 = x_k$$

Robust Stability Margins

- Analysis similar to Limon, Alamo, Camacho (2004), Magni and Scattolini (2005)
- Advanced step NMPC is ISS and tolerates some model mismatch
- ISS property (Jiang and Wang, 2001; Magni and Scattolini, 2005)
- Advanced step NMPC has smaller margin than Ideal NMPC,

 → but can be implemented without computational delay

Summary: Dynamic Optimization

Sequential Approaches – Use DAE Integrators

- Parameter Optimization
- Gradients by: Direct (and Adjoint) Sensitivity Equations
- Optimal Control (Profile Optimization)
 - Variational Methods
 - NLP-Based Methods Single and Multiple Shooting
- Require Repeated Solution of Model
- State Constraints are Difficult to Handle

Simultaneous Collocation Approach

- Discretize ODE's using orthogonal collocation on finite elements
- Straightforward addition of state constraints.
- Deals with unstable systems
- Solve model only once
- Avoid difficulties at intermediate points

Large-Scale Extensions

- Exploit structure of DAE discretization through decomposition
- Large problems solved efficiently with IPOPT

Acknowledgements

Funding

- Department of Energy
- National Science Foundation
- · Center for Advanced Process Decision-making (CMU)

Research Colleagues

- Antonio Flores-Tlacuahuac
- Tobias Jockenhövel
- Shivakumar Kameswaran
- · Yoshiaki Kawajiri
- Carl Laird
- Yi-dong Lang
- Andreas Wächter
- Victor Zavala

http://dynopt.cheme.cmu.edu

