U.S. DEPARTMENT OF ENERGY

Critical Materials Strategy

Diana Bauer

Office of Energy Policy and Systems Analysis August 12, 2014

- Overview of DOE's Critical Materials Strategy
- Current DOE Work
 - Waste as a Resource R&D
 - Analysis of Market Dynamics
- Interagency Strategy

Overview of DOE's Critical Materials Strategy

	1 H Hydrogen 1.00794																	2 He Helium 4.003
	3	4											5	6	7	8	9	10
	Li	Be											В	С	Ν	Ο	F	Ne
	Lithium 6.941	Beryllium 9.012182											Boron 10.811	Carbon 12.0107	Nitrogen 14.00674	Oxygen 15.9994	Fluorine 18.9984032	Neon 20,1797
	11	12											13	14	15	16	17	18
	Na	Mg											Al	Si	Р	S	Cl	Ar
1	Sodium 22.989770	Magnesium 24.3050											Aluminum 26.981538	Silicon 28.0855	Phosphorus 30.973761	Sulfur 32.066	Chlorine 35.4527	Argon 39.948
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	K Potassium	Calcium	Scandium	Ti Titanium	V Vanadium	Cr	Mn Manganese	Fe	Co	Ni	Cu	Zn	Gallium	Germanium	As	Selenium	Bromine	Krypton
	39.0983	38	39	47.867	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	Rb Rubidium	Strontium	Y		Nb	Mo Molybdenum	Tc Technetium	Ru Ruthenium	Rh	Pd Palladium	Ag	Cd	In	Sn ^{Tin}	Sb Antimony	Te Tellurium	I Iodine	Xe
5	85.4678 55	87.62 56	57	91.224 72	92.90638 73	95.94 74	(98)	101.07 76	102.90550	106.42 78	107.8682 70	80	114.818 81	118.710 82	121.760 83	127.60 84	126.90447 85	131.29 86
	Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	Cesium 132.90545	Barium 137.327	Lanthanum 138.9055	Hafnium 178.49	Tantalum 180.9479	Tungsten 183.84	Rhenium 186.207	Osmium 190.23	Iridium 192.217	Platinum 195.078	Gold 196.96655	Mercury 200.59	Thallium 204.3833	Lead 207.2	Bismuth 208.98038	Polonium (209)	Astatine (210)	Radon (222)
	87	88	89	104	105	106	107	108	109	110	111	112	113	114				
	Francium	Radium	Ac	Rf Rutherfordium	Db Dubnium	Seaborgium	Bh Bohrium	Hassium	Mt									
	(223)	(226)	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(269)	(272)	(277)						

62

Sm

94

Pu

Plutonium (244)

63

Eu

Europium 151.964

95

Am

Americium (243)

64

Gadolinium 157.25

96

Cm

Curium (247)

65

Tb Terbium 58.9253

97

Bk

Berkelium (247)

66

Dy

98

Cf

Californiur (251)

67

Ho Holmium 164.93032

99

Es

Einsteiniu (252)

68

Er Erbium 167.26

100

Fm

Fermium (257)

69

Tm Thulium 168.93421

101

Md

endeleviu (258)

70

59

Pr

91

Pa

Protactinium 231.03588

90

60

Nd

92

U

Uranium 238.0289

61

Promethium (145)

93

Np Neptunium (237)

71 1 11

2011 CMS Medium-Term Criticality (2015-2025)

- Diversify global supply chains
- Develop substitutes
- Reduce, reuse and recycle

Material supply chain with environmentally-sound processes

Current DOE Work

Critical Materials Institute (Ames Lab lead)

Recycling

Crosscutting Research

- Assess life cycles and supply chains of critical materials
- Develop theoretical, computational and experimental tools to support other focus areas

Replacement materials that have lower or zero critical materials content Knowledge-based approach to accelerate advanced material development and deployment Reuse & Diversifying

Supply

Reuse & Recycling

 Develop economically viable technologies for efficient material use in manufacturing, recycling and reuse

Diversifying Supply

Developing Substitutes

- Enable new sources of critical materials not currently commercially viable
- Improve efficiency of processing

https://cmi.ameslab.gov/

Extracting Critical Materials from Phosphate Wastes and Processing

FOA Objective:

Enable economically viable extraction of critical minerals as a path to optimize the value stream of low-to-moderate temperature resources

FOA Federal Funding Total: \$4,064,628								
Selectee	Partner(s)	Title						
SOUTHERN RESEARCH		Geothermal Thermoelectric Generation (G- TEG) with Integrated Temperature Driven Membrane Distillation and Novel Manganese Oxide for Lithium Extraction						
SRI International	sm SIMBOL materials	Selective Recovery of Metals From Geothermal Brine						
		Engineering Thermophilic Microorganisms To Selectively Extract Strategic Metals From Low Temperature Geothermal Brines						
		Maximizing REE Recovery in Geothermal Systems						

Low Temperature Geothermal Mineral Program – Last Week's Selectees (cont.)

FOA Federal Funding Total: \$4,064,628								
Selectee	Partner(s)	Title						
Pacific Northwest	TBD	Magnetic Partitioning Nanofluid for Rare Earth Extraction from Geothermal Fluids						
Pacific Northwest	BARR UNIVERSITY OF OREGON	Recovery of Rare Earths, Precious Metals and other Critical Materials from Geothermal Waters with Advanced Sorbent Structures						
		Chelating Resins for Selective Separation and Recovery of Rare Earth Elements from Low Temperature Geothermal Water						
sm SIMBOL materials	OAK RIDGE National Laboratory	Determination of Rare Earths in Geothermal Brines and Evaluation of Potential Extraction Techniques						
Tusaar Corp		Environmentally Friendly Economical Sequestration Of Rare Earth Metals From Geothermal Waters						

Analysis of Market Dynamics: Rare Earth Magnet Supply Chains

Model Results: Price Projections for Dysprosium Oxide

Interagency Strategy

NSTC Subcommittee on Critical and Strategic Mineral Supply Chains (Est. 2010)

"The Subcommittee will facilitate strong, coordinated effort across federal agencies to identify and address important policy implications arising from strategic minerals supply issues"

- Subcommittee Charter

Areas of Focus

- Criticality Assessment and Early
 Warning
- Long Term R&D Options
- Information Transparency

Co-Chairs: Cyrus Wadia (OSTP), Diana Bauer (DOE), and Larry Meinert (USGS) 17

NSTC Subcommittee on Critical and Strategic Mineral Supply Chains: Integrated View

NSTC Subcommittee on Critical and Strategic Mineral Supply Chains: Request for Information (RFI) – Responses Due Sept 30

RFI Categories

- Category 1: Demand
- Category 2: Exploration, Mining, and Smelting/Refining
- Category 3: Supply and Supply Chain
- Category 4: Market Dynamics
- Category 5: Mitigation
- Category 6: Other

For more info:

https://federalregister.gov/a/2014-17192

or

http://www.whitehouse.gov/administration/eop/ostp/blog

To submit responses, email <u>criticalmaterials@ostp.gov</u>

U.S. DEPARTMENT OF ENERGY

Critical Materials Strategy

Questions?