

Process Intensification

Adam Harvey Professor of Process Intensification Process Intensification Group Chemical Engineering & Advanced Materials Newcastle University, UK

30th September 2014

- Pioneered by Colin Ramshaw at ICI in the late 1970s, largely via rotating equipment:
 - Spinning disc reactors (SDRs)
 - Rotating packed beds (RPBs)

P. I. in the UK: PIN

"PIN" the Process Intensification Network. Managed by:

- Prof David Reay
- Prof Colin Ramshaw
- Prof Adam Harvey

Heriot Watt University Cranfield University Newcastle University

- 22nd Meeting: May 2014, Newcastle University
- 23rd Meeting: May 2015, Newcastle University
- ~300 on the mailing list: industry, academia, UK and overseas
- Email <u>dareay@aol.com</u> or <u>adam.harvey@ncl.ac.uk</u> to join

Process Intensification Group [PIG]

- 9 academic staff
- 12 research associates
- 28 PhDs
- http://pig.ncl.ac.uk

RESOURCES

Click to LOOK INSIDE!

Click to LOOK INSIDE!

Editors Kamelia Boodhoo and Adam Harvey

Process Intensification For Green Chemistry

Engineering Solutions for Scataleable Chemical Processing

SIWILEY

Technologies

Oscillatory Baffled Reactors (OBRs)

Spinning Disc Reactors (SDRs)

Rotating Packed Beds (RPBs)

Heat Pipes

Reactive Extraction (RE)

Non-thermal plasmas

"P.I." Process Intensification

"The strategy of making dramatic" reductions in the size of process plant items by re-examining the fundamentals of their heat and mass transfer"

*at least an order of magnitude

"A novel design approach where fundamental process needs and business considerations are analysed and innovative process technologies used to meet these optimally"

Safer, Cleaner, Smaller

Conventional Chemical Process (NB: this is a metaphor)

P. I. G. 2 4 -Large Smelly Dirty Dangerous

· MORE AGILE

Smaller Leaner More efficient Reduced Emissions

A significant reduction of the size of process equipment in a chemical plant (without affecting production target) means reductions in:

- Pipework
- Footprint
- Civil engineering
- reduced capital cost

Why use PI?

Business drivers

Process drivers

- Miniaturised plant
- Reduced operating costs
- Distributed manufacturing
- Process flexibility
- New product introduction
- Speed to market

- Improved selectivity and product purity
- Improved yield
- Improved process safety
- Wider processing conditions obtrusive on landscape

Responsive processing

Process improvement

Sustainable development

Environmental drivers

- Reduced energy usage
- Reduced waste
- Reduced solvent use
- Smaller plants less

- 1. Active Enhancement, input of energy by various means:
 - Agitation
 - Vibration
 - Rotation
 - Ultrasound
 - Microwaves
 - Electric fields
 - Etc...

2. Structural Enhancement:

- Fins
- Roughened surfaces
- Static mixers

3. Moving from batch to continuous processing

- Continuous operation equipment smaller in size than batch (lab scale may be closer to full scale)
- Reduced reactor inventory, hence safer operation
- Ability to vary conditions quickly, hence opportunity for rapid grade change
- Problems with scale-up of batch processes minimised

Got a few problems going from lab scale up to full scale commercial

4. Hybridisation of Unit Operations

- Membrane reactors
- Reactive extraction
- Reactive Distillation
- Etc

Example: Reactive Distillation

(Eastman Kodak) "successfully used reactive distillation to replace 11 distillation vessels (with associated condensers and reboilers), with just 3 RD vessels"

Case Study: A Saponification reaction in an Oscillatory Baffled Reactor

Achieves plug flow by tanks-in-series rather than net flow turbulence

Newcastle University

Long residence times in a compact reactor, whilst maintaining plug flow and good two phase mixing.

Hydrolysis of a naturally occurring mixture of alkyl and steryl stearates, using concentrated sodium hydroxide in an ethanol and water solvent.

- 75 m³ Batch Reactor [50 m³ fill]
- 115 °C

- 2h "reaction time" in a 24h batch cycle
 - Molar ratio ~ 0.9

SAFETY Product quality Energy savings

- **Temperature fixed at 115 °C**
- Molar ratios in the range 0.6 1.05
- **Residence times in the range 8 25 minutes**

- **TARGET PRODUCT**
- **Desired product, sterol A > 23 %**
- Undesired product, sterol B < 10 %

Can it be done ?

% Sterol 'B' in Product

(+ the modelling wasvalidated by experiment!)

Operating Windows

Monitoring: FTIR ATR Cell

SUMMARY: OBR Saponification

The OBR could be used to perform the reaction:

- .at lower temperature (safer, reduced energy)
- ...with improved product quality
- ...more consistently
- ..in 1/10th the reaction time (inherent kinetics)
- ...in a reactor less than 1/100th the volume
- The product can be monitored online
- Operation is flexible (wide operating window)

Was the reactor built?

- Champion" made redundant
- No "risk takers" remaining
- Lack of understanding (company dominated by chemists...)

Examples of PI technologies: (i) Non-thermal Plasmas

Plasmas can be "<u>thermal</u>" and "<u>non-thermal</u>".

Thermal Plasmas

 $Te = T_N = T$ ion

- •The thermal plasmas are hot (10,000 to 20,000K);
- Ionization is due to electron collisions with preliminary excited hot atoms and molecules;

•Not chemically selective. Arc Plasma, Plasma Torch Non-thermal Plasmas

- •The electron temperature is from 10,000 to 100,000K;
- They operate close to room temperature;
- Ionization is mostly provided by electron collisions; with "cold" excited atoms and molecules;
- •Selective to chemical reactions. Corona, RF Plasma, DBD, Microwave

<u>plasma</u>

CO₂ Decomposition in Non-thermal Plasma

$e + CO_2 \longrightarrow CO + O + e$ (CO₂ dissociation energy: 5.5 eV) (1)

$e + CO \longrightarrow C + O + e$ (CO dissociation energy: 11.1 eV) (2)

*DBD plasma cannot dissociate CO/CO₂ to C Thermal plasma would require 700 °C

Examples of PI technologies ...

Examples of PI technology (iii) Spinning Disc Reactor

 High surface area per unit volume for enhanced heat transfer, even on scale-up

Microreactor, catalytic plate reactor

Challenges to P.I.

- Industry conservatism
 - Novel field involves risks
 - Culture of "rushing to be second"?
- Finding the right information easily
 - Being aware it exists
 - Exemplars/Demonstrator units
- Step changes in equipment design and operation involved

- New industries
 - Biofuels?
- New areas?
 - Generic pharmaceuticals
 - Water
 - Food

Acknowledgments

Dr Anh Phan Dr Nasratun Masngut Dr Fatimah Mohd Rasdi Dr Valentine Eze Dr K Boodhoo

Prof M R Mackley Dr P Stonestreet