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Distributed Natural Resources 

 Stranded gas: Small remote 
deposits that are too difficult 
and/or expensive to extract 

 7000 tcf worldwide 
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 Associated gas: flared or 
reinjected 

 4.5 trillion megajoules wasted 
in 2011 

Monetization: conversion to liquids, GTL technologies (Fischer-
Tropsch, liquefaction): poor scale-down  

Develop new flexible processing capacity at small scales  

 image source: www.gas-2.com  image source: www.gereports.com 
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Specific challenges 

• water management: scarce, location-dependent resource; steam 
needed/generated at multiple pressures 

• hydrogen management: reforming product H2:CO ratio is not 
optimal for FT synthesis: separation or high recycling? 

• process control 
 
 

Application: Small, Modular GTL Systems 

Not a “chemical integrated circuit”  
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Robust Autothermal Microchannel Reactors 
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 Single integrated physical device has fewer “control handles” 

 Millimeter thick channels make measurement and actuation difficult 

 Match heat generation and consumption: offset catalyst layers 
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Process intensification: difficult control 
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Temperature Control with Phase Change Material 
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 Phase change layer absorbs heat at constant temperature when 
melting: Prevents temperature extremes caused by disturbances 

Pattison and Baldea, AIChE J., 2013 
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Segmented Combustion Catalyst Configuration 
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 Alternating catalytically active and inactive segments can emulate a 
distributed feed and modulate the rate of heat generation axially 

 Formulate optimization to select: 

 the optimal parametric temperature trajectory and  

 the optimal catalyst segmentation to track the trajectory 

Pattison, Estep and Baldea, Ind. Eng. Chem. Res., 2013 
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Optimal Design Under Uncertainty 

• Geometry is fixed and must be determined at design stage 

• Online adjustments are not possible 

Model-based optimal design under uncertainty 

• Shape dynamic behavior via stochastic optimization of PCM 

thickness, catalyst geometry 

• Usual approach: study a large number of scenarios 

• Identification-based optimization (IBO): represent 

disturbances as multi-level random signals, impose on 

system model during dynamic optimization iterations  

• 10 reduction in computation time 

 

 ΔH<0       

 ΔH>0       

ref ref     v =v (v,σ)

Wang and Baldea, Comput. Chem. Eng., 2014 
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Cryogenic Liquefaction Process 

• PRICO Process (mixed-refrigerant, cryogenic) 

• Design challenges:  

• Integration: refrigeration generated and trapped in the process 

• Intensification: multi-stream heat exchanger (MHEX) 

PRICO is a trademark of Black & Veatch  

Pattison and Baldea, ESCAPE 24, 2014 

http://www.lytron.com/ 
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Simultaneous Flowsheet and Unit Optimization 

• Optimization includes composition of refrigerant (N2 + C1-C4) 

• Phase transitions in MHEX: highly nonlinear, discontinuous model 

• Equation-oriented pseudo-transient model: improve basin of 
convergence of model equations 

• Time-relaxation-based optimization 

PRICO is a trademark of Black & Veatch  

Pattison and Baldea, ESCAPE 24, 2014 

Pattison and Baldea, AIChE J., 2014 
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PRICO Liquefaction Process 

Optimal T-H 

curves in MHEX 

• Tight heat integration (2C approach) 

• Optimal process uses 5.7% less power than previous designs. 

Kamath et al., AIChE J., 2012 

𝚫𝐓𝐦𝐢𝐧 = 𝟐 ℃ 

Air separation 

 applications 

Pattison and Baldea, ESCAPE 24, 2014 
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PI: Future Challenges 

Theory: break unit ops paradigm 

Synthesis of intensified processes: Phenomena-

based Superstructure? (presentation by Dr. Mario Eden) 

Flowsheet “co-simulation” / optimization (Lang et al., 2009) 

Smart manufacturing: embed control capability 
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process simulator “parts bin” 
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• ACS-PRF 

• Ventech Engineering, Ltd., Velocys, Ltd 

• Texas Wisconsin California Control Consortium 
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Context  

Process intensification (PI): 

“Any chemical engineering development that leads to substantially 

smaller, cleaner, safer and more energy efficient technology” (Reay 

et al., 2013) or “that combine[s] multiple operations into fewer 

devices.” (Tsouris and Joseph, 2003) 

Multum in parvo (Lat.) : much in little 

 

Paradigm 

• Process should be governed by intrinsic rates 

• Identify limiting factor(s) in a process (transport, transfer) 

• Address them via changes in system operation (batch  

continuous), device geometry, external energy fields 

• Scale-up by “numbering-up”  

13 
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PI: Multiple Phenomena, Scale-Independent 
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www.velocys.com 

Courtesy of Bailee Roach 
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PI: Multiple Phenomena, Scale-Independent 
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30% capital savings, 

use up to 40% less 

energy 

10x smaller size 

Schultz et al., CEP, 2002, Kiss and 

Bildea, CEPPI, 2011 

Zanfir and Gavriilidis, CES, 2003 

PI practice ahead of theory  
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Context  

Process intensification (PI): 

“Any chemical engineering development that leads to substantially 

smaller, cleaner, safer and more energy efficient technology” (Reay 

et al., 2013) or “that combine[s] multiple operations into fewer 

devices.” (Tsouris and Joseph, 2003) 

Multum in parvo (Lat.) : much in little 
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Stankiewicz and Moulijn, 2003 Reay et al., 2013 
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Integration vs. Intensification 

• Fundamental changes in design, operation 
17 
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• “The front-runner of 

industrial process 

intensification” 
(Harmsen, 2007) 
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Integration vs. Intensification 

• Reduced number of units  

• Reduced unit size and 

holdup 

• Reduced OPEX (no 

recycling) 

BUT 

• Reduced number of degress 

of freedom 
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Schembecker and Tlatlik, 2003; Nikacevic et al., 2012 
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Conclusions 

• Intensification fosters dynamic complexity 

- Better economics/improved efficiency: more difficult 
control 

- Scale independent 
 

• Accomplishments 

- “cool” applications and commercial success 

 

• Future 

- Theory: new process synthesis, simulation, 
optimization framework; will likely lead to new 
applications 

- Embed control considerations at the control stage 

- Applications: smarter manufacturing, interaction with 
power system 
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