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Distributed Natural Resources

(Source: BP Statistical Review and IEA)
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- Stranded gas: Small remote = Associated gas: flared or
deposits that are too difficult reinjected
and/or expensive to extract

= 4.5 trilllon megajoules wasted
= 7000 tcf worldwide in 2011

Monetization: conversion to liquids, GTL technologies (Fischer-
Tropsch, liquefaction): poor scale-down

Develop new flexible processing capacity at small scales
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Application: Small, Modular GTL Systems
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Novel MSR reactor : Membrane Membrane H; .
based oxygen separation separation FT reactor Separstion

Specific challenges

- water management: scarce, location-dependent resource; steam
needed/generated at multiple pressures

- hydrogen management: reforming product H,:CO ratio is not
optimal for FT synthesis: separation or high recycling?

- process control

Not a “chemical integrated circuit”
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Robust Autothermal Microchannel Reactors
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= Single integrated physical device has fewer “control handles”
= Millimeter thick channels make measurement and actuation difficult
= Match heat generation and consumption: offset catalyst layers

Process intensification: difficult control
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Temperature Control with Phase Change Material
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= Phase change layer absorbs heat at constant temperature when
melting: Prevents temperature extremes caused by disturbances

Pattison and Baldea, AIChE J., 2013

and Energy Systems Engineering 5




Segmented Combustion Catalyst Configuration

Distributed Feed
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= Alternating catalytically active and inactive segments can emulate a
distributed feed and modulate the rate of heat generation axially
= Formulate optimization to select:
= the optimal parametric temperature trajectory and
= the optimal catalyst segmentation to track the trajectory

Pattison, Estep and Baldea, Ind. Eng. Chem. Res., 2013
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Optimal Design Under Uncertainty
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Geometry is fixed and must be determined at design stage
Online adjustments are not possible
Model-based optimal design under uncertainty
Shape dynamic behavior via stochastic optimization of PCM
thickness, catalyst geometry
Usual approach: study a large number of scenarios
Identification-based optimization (IBO): represent
disturbances as multi-level random signals, impose on
system model during dynamic optimization iterations
10 reduction in computation time

Wang and Baldea, Comput. Chem. Eng., 2014

Energy Systems Engineering




Cryogenic Liquefaction Process
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- PRICO Process (mixed-re]
. Design challenges: http://www.lytron.com/

- Integration: refrigeration generated and trapped in the process
- Intensification: multi-stream heat exchanger (MHEX)
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Simultaneous Flowsheet and Unit Optimization
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Throttle Valve Pattison and Baldea, ESCAPE 24, 2014

- Optimization includes composition of refrigerant (N2 + C1-C4)
- Phase transitions in MHEX: highly nonlinear, discontinuous model

- Equation-oriented pseudo-transient model: improve basin of
convergence of model equations

Time-relaxation-based optimization Pattison and Baldea, AIChE J., 2014
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PRICO Liquefaction Process
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Pattison and Baldea, ESCAPE 24, 2014

Throttle

- Tight heat integration (2°C approach)
- Optimal process uses 5.7% less power than previous designs.

Kamath et al., AIChE J., 2012
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Pl: Future Challenges
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Models readily available in ?
process simulator “parts bin”

Theory: break unit ops paradigm

Synthesis of intensified processes:. Phenomena-
based Superstructure? (presentation by Dr. Mario Eden)

Flowsheet “co-simulation” / optimization (Lang et al., 2009
Smart manufacturing: embed control capability
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Context

Process intensification (PI):

“Any chemical engineering development that leads to substantially
smaller, cleaner, safer and more enerqy efficient technology” (Reay
et al., 2013) or “that combine[s] multiple operations into fewer
devices.” (Tsouris and Joseph, 2003)

Multum in parvo (Lat.) : much In little

Paradigm
Process should be governed by intrinsic rates
ldentify limiting factor(s) in a process (transport, transfer)

Address them via changes in system operation (batch —
continuous), device geometry, external energy fields

Scale-up by “numbering-up”
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Pl: Multiple Phenomena, Scale-Independent

Integrated Intensified
Reaction e —
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cm diameter Courtesy of Bailee Roach

Several meters tall
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Pl: Multiple

Phenomena, Scale-Independent

Integrated Intensified
Reaction e —
AH>0 — AH>0
AH<0
mm channels 10x smaller size
AH<0 <1m length Zanfir and Gavriilidis, CES, 2003
Separation —
N
ABC AB,C 30% capital savings,
el —» —
B B use up to 40% less
energy
\[/_»c Schultz et al., CEP, 2002, Kiss and
cm diameter Bildea, CEPPI, 2011

Pl practice ahead of theory
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Context

Process intensification (PI):

“Any chemical engineering development that leads to substantially
smaller, cleaner, safer and more enerqy efficient technology” (Reay
et al., 2013) or “that combine[s] multiple operations into fewer
devices.” (Tsouris and Joseph, 2003)

Multum in parvo (Lat.) : much In little
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Reay et al., 2013
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Integration vs. Intensification
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- Fundamental changes in design, operation




Integration vs. Intensification
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Integration vs. Intensification
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- Reduced unit size and

Ri holdup

Fo.Cad FoCaou=0  + Reduced OPEX (no
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Schembecker and Tlatlik, 2003; Nikacevic et al., 2012
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Conclusions

Intensification fosters dynamic complexity

- Better economics/improved efficiency: more difficult
control

- Scale independent

Accomplishments
- “cool” applications and commercial success

Future

- Theory: new process synthesis, simulation,
optimization framework; will likely lead to new
applications

- Embed control considerations at the control stage
- Applications: smarter manufacturing, interaction with

power system
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